648 resultados para Relational fuzzy clustering


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Engenharia Industrial

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Informática

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Logica Computicional

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extraction of relevant terms from texts is an extensively researched task in Text- Mining. Relevant terms have been applied in areas such as Information Retrieval or document clustering and classification. However, relevance has a rather fuzzy nature since the classification of some terms as relevant or not relevant is not consensual. For instance, while words such as "president" and "republic" are generally considered relevant by human evaluators, and words like "the" and "or" are not, terms such as "read" and "finish" gather no consensus about their semantic and informativeness. Concepts, on the other hand, have a less fuzzy nature. Therefore, instead of deciding on the relevance of a term during the extraction phase, as most extractors do, I propose to first extract, from texts, what I have called generic concepts (all concepts) and postpone the decision about relevance for downstream applications, accordingly to their needs. For instance, a keyword extractor may assume that the most relevant keywords are the most frequent concepts on the documents. Moreover, most statistical extractors are incapable of extracting single-word and multi-word expressions using the same methodology. These factors led to the development of the ConceptExtractor, a statistical and language-independent methodology which is explained in Part I of this thesis. In Part II, I will show that the automatic extraction of concepts has great applicability. For instance, for the extraction of keywords from documents, using the Tf-Idf metric only on concepts yields better results than using Tf-Idf without concepts, specially for multi-words. In addition, since concepts can be semantically related to other concepts, this allows us to build implicit document descriptors. These applications led to published work. Finally, I will present some work that, although not published yet, is briefly discussed in this document.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study focuses on the implementation of several pair trading strategies across three emerging markets, with the objective of comparing the results obtained from the different strategies and assessing if pair trading benefits from a more volatile environment. The results show that, indeed, there are higher potential profits arising from emerging markets. However, the higher excess return will be partially offset by higher transaction costs, which will be a determinant factor to the profitability of pair trading strategies. Also, a new clustering approach based on the Principal Component Analysis was tested as an alternative to the more standard clustering by Industry Groups. The new clustering approach delivers promising results, consistently reducing volatility to a greater extent than the Industry Group approach, with no significant harm to the excess returns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de Mestrado em Engenharia Informática

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Usually, data warehousing populating processes are data-oriented workflows composed by dozens of granular tasks that are responsible for the integration of data coming from different data sources. Specific subset of these tasks can be grouped on a collection together with their relationships in order to form higher- level constructs. Increasing task granularity allows for the generalization of processes, simplifying their views and providing methods to carry out expertise to new applications. Well-proven practices can be used to describe general solutions that use basic skeletons configured and instantiated according to a set of specific integration requirements. Patterns can be applied to ETL processes aiming to simplify not only a possible conceptual representation but also to reduce the gap that often exists between two design perspectives. In this paper, we demonstrate the feasibility and effectiveness of an ETL pattern-based approach using task clustering, analyzing a real world ETL scenario through the definitions of two commonly used clusters of tasks: a data lookup cluster and a data conciliation and integration cluster.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modeling Extract-Transform-Load (ETL) processes of a Data Warehousing System has always been a challenge. The heterogeneity of the sources, the quality of the data obtained and the conciliation process are some of the issues that must be addressed in the design phase of this critical component. Commercial ETL tools often provide proprietary diagrammatic components and modeling languages that are not standard, thus not providing the ideal separation between a modeling platform and an execution platform. This separation in conjunction with the use of standard notations and languages is critical in a system that tends to evolve through time and which cannot be undermined by a normally expensive tool that becomes an unsatisfactory component. In this paper we demonstrate the application of Relational Algebra as a modeling language of an ETL system as an effort to standardize operations and provide a basis for uncommon ETL execution platforms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When a pregnant woman is guided to a hospital for obstetrics purposes, many outcomes are possible, depending on her current conditions. An improved understanding of these conditions could provide a more direct medical approach by categorizing the different types of patients, enabling a faster response to risk situations, and therefore increasing the quality of services. In this case study, the characteristics of the patients admitted in the maternity care unit of Centro Hospitalar of Porto are acknowledged, allowing categorizing the patient women through clustering techniques. The main goal is to predict the patients’ route through the maternity care, adapting the services according to their conditions, providing the best clinical decisions and a cost-effective treatment to patients. The models developed presented very interesting results, being the best clustering evaluation index: 0.65. The evaluation of the clustering algorithms proved the viability of using clustering based data mining models to characterize pregnant patients, identifying which conditions can be used as an alert to prevent the occurrence of medical complications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lecture Notes in Computer Science, 9273

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The MAP-i Doctoral Programme in Informatics, of the Universities of Minho, Aveiro and Porto

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the problem of estimation maintenance costs for the case of the pitch controls system of wind farms turbines. Previous investigations have estimated these costs as (traditional) “crisp” values, simply ignoring the uncertainty nature of data and information available. This paper purposes an extended version of the estimation model by making use of the Fuzzy Set Theory. The results alert decision-makers to consequent uncertainty of the estimations along with their overall level, thus improving the information given to the mainte-nance support system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Psicologia Básica