826 resultados para Regulation-based classification system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Altough nowadays DMTA is one of the most used techniques to characterize polymers thermo-mechanical behaviour, it is only effective for small amplitude oscillatory tests and limited to a single frequency analysis (linear regime). In this thesis work a Fourier transform based experimental system has proven to give hint on structural and chemical changes in specimens during large amplitude oscillatory tests exploiting multi frequency spectral analysis turning out in a more sensitive tool than classical linear approach. The test campaign has been focused on three test typologies: Strain sweep tests, Damage investigation and temperature sweep tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In multi-unit organisations such as a bank and its branches or a national body delivering publicly funded health or education services through local operating units, the need arises to incentivize the units to operate efficiently. In such instances, it is generally accepted that units found to be inefficient can be encouraged to make efficiency savings. However, units which are found to be efficient need to be incentivized in a different manner. It has been suggested that efficient units could be incentivized by some reward compatible with the level to which their attainment exceeds that of the best of the rest, normally referred to as “super-efficiency”. A recent approach to this issue (Varmaz et. al. 2013) has used Data Envelopment Analysis (DEA) models to measure the super-efficiency of the whole system of operating units with and without the involvement of each unit in turn in order to provide incentives. We identify shortcomings in this approach and use it as a starting point to develop a new DEA-based system for incentivizing operating units to operate efficiently for the benefit of the aggregate system of units. Data from a small German retail bank is used to illustrate our method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recommender system is a specific type of intelligent systems, which exploits historical user ratings on items and/or auxiliary information to make recommendations on items to the users. It plays a critical role in a wide range of online shopping, e-commercial services and social networking applications. Collaborative filtering (CF) is the most popular approaches used for recommender systems, but it suffers from complete cold start (CCS) problem where no rating record are available and incomplete cold start (ICS) problem where only a small number of rating records are available for some new items or users in the system. In this paper, we propose two recommendation models to solve the CCS and ICS problems for new items, which are based on a framework of tightly coupled CF approach and deep learning neural network. A specific deep neural network SADE is used to extract the content features of the items. The state of the art CF model, timeSVD++, which models and utilizes temporal dynamics of user preferences and item features, is modified to take the content features into prediction of ratings for cold start items. Extensive experiments on a large Netflix rating dataset of movies are performed, which show that our proposed recommendation models largely outperform the baseline models for rating prediction of cold start items. The two proposed recommendation models are also evaluated and compared on ICS items, and a flexible scheme of model retraining and switching is proposed to deal with the transition of items from cold start to non-cold start status. The experiment results on Netflix movie recommendation show the tight coupling of CF approach and deep learning neural network is feasible and very effective for cold start item recommendation. The design is general and can be applied to many other recommender systems for online shopping and social networking applications. The solution of cold start item problem can largely improve user experience and trust of recommender systems, and effectively promote cold start items.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Case-Based Reasoning (CBR) uses past experiences to solve new problems. The quality of the past experiences, which are stored as cases in a case base, is a big factor in the performance of a CBR system. The system's competence may be improved by adding problems to the case base after they have been solved and their solutions verified to be correct. However, from time to time, the case base may have to be refined to reduce redundancy and to get rid of any noisy cases that may have been introduced. Many case base maintenance algorithms have been developed to delete noisy and redundant cases. However, different algorithms work well in different situations and it may be difficult for a knowledge engineer to know which one is the best to use for a particular case base. In this thesis, we investigate ways to combine algorithms to produce better deletion decisions than the decisions made by individual algorithms, and ways to choose which algorithm is best for a given case base at a given time. We analyse five of the most commonly-used maintenance algorithms in detail and show how the different algorithms perform better on different datasets. This motivates us to develop a new approach: maintenance by a committee of experts (MACE). MACE allows us to combine maintenance algorithms to produce a composite algorithm which exploits the merits of each of the algorithms that it contains. By combining different algorithms in different ways we can also define algorithms that have different trade-offs between accuracy and deletion. While MACE allows us to define an infinite number of new composite algorithms, we still face the problem of choosing which algorithm to use. To make this choice, we need to be able to identify properties of a case base that are predictive of which maintenance algorithm is best. We examine a number of measures of dataset complexity for this purpose. These provide a numerical way to describe a case base at a given time. We use the numerical description to develop a meta-case-based classification system. This system uses previous experience about which maintenance algorithm was best to use for other case bases to predict which algorithm to use for a new case base. Finally, we give the knowledge engineer more control over the deletion process by creating incremental versions of the maintenance algorithms. These incremental algorithms suggest one case at a time for deletion rather than a group of cases, which allows the knowledge engineer to decide whether or not each case in turn should be deleted or kept. We also develop incremental versions of the complexity measures, allowing us to create an incremental version of our meta-case-based classification system. Since the case base changes after each deletion, the best algorithm to use may also change. The incremental system allows us to choose which algorithm is the best to use at each point in the deletion process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCCION: La obstrucción biliar es la principal causa de pancreatitis aguda y su curso es moderado a leve aunque un 20% desarrollan formas severas. La remoción de los cálculos por CPRE se ha empleado como terapéutica aunque su rol es controversial y no se ha demostrado su utilidad en forma temprana. El propósito de este estudio es observar la evolución de los pacientes con PASB en quienes se realice CPRE con respecto al curso de la enfermedad. METODOLOGIA: Estudio retrospectivo observacional descriptivo en pacientes con PASB llevados a CPRE. Entre junio y octubre de 2012 se encontraron 72 pacientes con PASB y patrón biliar obstructivo, 49 (68.06%) en los cuales se realizo de forma temprana (antes de 72 horas) y 23 (31,94 %) de forma tardía (después de las 72 horas). RESULTADOS: No se encontraron diferencias en la morbilidad entre los dos grupos observados. Se encontró una mayor incidencia de PASB en mujeres, no hubo complicaciones asociadas al procedimiento y no hubo mortalidad asociada en ninguno de los grupos. DISCUSION: El estudio no muestra que la realización de CPRE tardía influya de forma desfavorable en los pacientes con PASB. Se encontró mayor incidencia de PASB en mujeres y edad media de 61 años. Deben realizarse mas estudios como el presente con un mayor número de pacientes para demostrar que no hay aumento en la morbimortalidad en los pacientes que sean llevados a CPRE después de 72 horas de inicio de los síntomas y poder generar recomendaciones de manejo locales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Se realizó un estudio observacional retrospectivo longitudinal en una Institución prestadora de Servicios de Salud de la ciudad de Bogotá, con el objetivo de evaluar la efectividad en el manejo del dolor de la terapia con acupuntura en el tratamiento de lumbalgia. Se tomaron 150 historias clínicas de pacientes con lumbalgia atendidos de enero de 2014 a mayo de 2016, las cuales fueron sometidas a los criterios de inclusión definidos por los autores, arrojando 48 historias sometidas a la prueba de Friedman con el fin de identificar el impacto sobre el dolor del tratamiento con acupuntura en los pacientes seleccionados. Adicionalmente, bajo un muestreo aleatorio simple de distribución normal sobre las 48 historias clínicas evaluadas, se seleccionaron 25 casos a los cuales se les aplicó una encuesta no estructurada, con el fin de obtener información sobre el estado de la patología después de finalizar el tratamiento e identificar las posibles causas de deserción. Con este estudio se concluye que la terapia con acupuntura es efectiva en el manejo del dolor de pacientes con lumbalgia, y que es necesario realizar más estudios que puedan sustentar la inclusión de la terapéutica en el manejo de esta patología.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new rock mass classification scheme, the Host Rock Classification system (HRC-system) has been developed for evaluating the suitability of volumes of rock mass for the disposal of high-level nuclear waste in Precambrian crystalline bedrock. To support the development of the system, the requirements of host rock to be used for disposal have been studied in detail and the significance of the various rock mass properties have been examined. The HRC-system considers both the long-term safety of the repository and the constructability in the rock mass. The system is specific to the KBS-3V disposal concept and can be used only at sites that have been evaluated to be suitable at the site scale. By using the HRC-system, it is possible to identify potentially suitable volumes within the site at several different scales (repository, tunnel and canister scales). The selection of the classification parameters to be included in the HRC-system is based on an extensive study on the rock mass properties and their various influences on the long-term safety, the constructability and the layout and location of the repository. The parameters proposed for the classification at the repository scale include fracture zones, strength/stress ratio, hydraulic conductivity and the Groundwater Chemistry Index. The parameters proposed for the classification at the tunnel scale include hydraulic conductivity, Q´ and fracture zones and the parameters proposed for the classification at the canister scale include hydraulic conductivity, Q´, fracture zones, fracture width (aperture + filling) and fracture trace length. The parameter values will be used to determine the suitability classes for the volumes of rock to be classified. The HRC-system includes four suitability classes at the repository and tunnel scales and three suitability classes at the canister scale and the classification process is linked to several important decisions regarding the location and acceptability of many components of the repository at all three scales. The HRC-system is, thereby, one possible design tool that aids in locating the different repository components into volumes of host rock that are more suitable than others and that are considered to fulfil the fundamental requirements set for the repository host rock. The generic HRC-system, which is the main result of this work, is also adjusted to the site-specific properties of the Olkiluoto site in Finland and the classification procedure is demonstrated by a test classification using data from Olkiluoto. Keywords: host rock, classification, HRC-system, nuclear waste disposal, long-term safety, constructability, KBS-3V, crystalline bedrock, Olkiluoto

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dans l'apprentissage machine, la classification est le processus d’assigner une nouvelle observation à une certaine catégorie. Les classifieurs qui mettent en œuvre des algorithmes de classification ont été largement étudié au cours des dernières décennies. Les classifieurs traditionnels sont basés sur des algorithmes tels que le SVM et les réseaux de neurones, et sont généralement exécutés par des logiciels sur CPUs qui fait que le système souffre d’un manque de performance et d’une forte consommation d'énergie. Bien que les GPUs puissent être utilisés pour accélérer le calcul de certains classifieurs, leur grande consommation de puissance empêche la technologie d'être mise en œuvre sur des appareils portables tels que les systèmes embarqués. Pour rendre le système de classification plus léger, les classifieurs devraient être capable de fonctionner sur un système matériel plus compact au lieu d'un groupe de CPUs ou GPUs, et les classifieurs eux-mêmes devraient être optimisés pour ce matériel. Dans ce mémoire, nous explorons la mise en œuvre d'un classifieur novateur sur une plate-forme matérielle à base de FPGA. Le classifieur, conçu par Alain Tapp (Université de Montréal), est basé sur une grande quantité de tables de recherche qui forment des circuits arborescents qui effectuent les tâches de classification. Le FPGA semble être un élément fait sur mesure pour mettre en œuvre ce classifieur avec ses riches ressources de tables de recherche et l'architecture à parallélisme élevé. Notre travail montre que les FPGAs peuvent implémenter plusieurs classifieurs et faire les classification sur des images haute définition à une vitesse très élevée.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): H.5.2, H.2.8, J.2, H.5.3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the problem of using the data mining models in a real-world situation where the user can not provide all the inputs with which the predictive model is built. A learning system framework, Query Based Learning System (QBLS), is developed for improving the performance of the predictive models in practice where not all inputs are available for querying to the system. The automatic feature selection algorithm called Query Based Feature Selection (QBFS) is developed for selecting features to obtain a balance between the relative minimum subset of features and the relative maximum classification accuracy. Performance of the QBLS system and the QBFS algorithm is successfully demonstrated with a real-world application

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart, by the sympathetic and parasympathetic branches of the autonomic nervous system. Heart rate variability analysis is an important tool to observe the heart's ability to respond to normal regulatory impulses that affect its rhythm. A computer-based intelligent system for analysis of cardiac states is very useful in diagnostics and disease management. Like many bio-signals, HRV signals are nonlinear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of nonlinear systems and provides good noise immunity. In this work, we studied the HOS of the HRV signals of normal heartbeat and seven classes of arrhythmia. We present some general characteristics for each of these classes of HRV signals in the bispectrum and bicoherence plots. We also extracted features from the HOS and performed an analysis of variance (ANOVA) test. The results are very promising for cardiac arrhythmia classification with a number of features yielding a p-value < 0.02 in the ANOVA test.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an extended study on the implementation of support vector machine(SVM) based speaker verification in systems that employ continuous progressive model adaptation using the weight-based factor analysis model. The weight-based factor analysis model compensates for session variations in unsupervised scenarios by incorporating trial confidence measures in the general statistics used in the inter-session variability modelling process. Employing weight-based factor analysis in Gaussian mixture models (GMM) was recently found to provide significant performance gains to unsupervised classification. Further improvements in performance were found through the integration of SVM-based classification in the system by means of GMM supervectors. This study focuses particularly on the way in which a client is represented in the SVM kernel space using single and multiple target supervectors. Experimental results indicate that training client SVMs using a single target supervector maximises performance while exhibiting a certain robustness to the inclusion of impostor training data in the model. Furthermore, the inclusion of low-scoring target trials in the adaptation process is investigated where they were found to significantly aid performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of appropriate features to characterise an output class or object is critical for all classification problems. In order to find optimal feature descriptors for vegetation species classification in a power line corridor monitoring application, this article evaluates the capability of several spectral and texture features. A new idea of spectral–texture feature descriptor is proposed by incorporating spectral vegetation indices in statistical moment features. The proposed method is evaluated against several classic texture feature descriptors. Object-based classification method is used and a support vector machine is employed as the benchmark classifier. Individual tree crowns are first detected and segmented from aerial images and different feature vectors are extracted to represent each tree crown. The experimental results showed that the proposed spectral moment features outperform or can at least compare with the state-of-the-art texture descriptors in terms of classification accuracy. A comprehensive quantitative evaluation using receiver operating characteristic space analysis further demonstrates the strength of the proposed feature descriptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Subcarrier allocation scheme for Orthogonal Frequency Division Multiplexing(OFDM) based multiuser system is proposed. Most previous algorithms use greedy approach as a subcarrier allocation scheme until a conflict occurs or as an initial first round allocation with improvement steps carried out in next rounds. Our algorithm uses information obtained by the forced costs of a system that incur by a current allocation to make assignment decisions. This algorithm does not rely on greedy approach and therefore can also be considered as a substitute for first layer Greedy algorithms. Simulation results show that for two user case this algorithm gives better or equal allocation 80-90 percent of the time when compared with the greedy allocation.