881 resultados para Regression-based decomposition.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT OBJECTIVE To identify the factors associated with severity of malocclusion in a population of adolescents. METHODS In this cross-sectional population-based study, the sample size (n = 761) was calculated considering a prevalence of malocclusion of 50.0%, with a 95% confidence level and a 5.0% precision level. The study adopted correction for the effect of delineation (deff = 2), and a 20.0% increase to offset losses and refusals. Multistage probability cluster sampling was adopted. Trained and calibrated professionals performed the intraoral examinations and interviews in households. The dependent variable (severity of malocclusion) was assessed using the Dental Aesthetic Index (DAI). The independent variables were grouped into five blocks: demographic characteristics, socioeconomic condition, use of dental services, health-related behavior and oral health subjective conditions. The ordinal logistic regression model was used to identify the factors associated with severity of malocclusion. RESULTS We interviewed and examined 736 adolescents (91.5% response rate), 69.9% of whom showed no abnormalities or slight malocclusion. Defined malocclusion was observed in 17.8% of the adolescents, being severe or very severe in 12.6%, with pressing or essential need of orthodontic treatment. The probabilities of greater severity of malocclusion were higher among adolescents who self-reported as black, indigenous, pardo or yellow, with lower per capita income, having harmful oral habits, negative perception of their appearance and perception of social relationship affected by oral health. CONCLUSIONS Severe or very severe malocclusion was more prevalent among socially disadvantaged adolescents, with reported harmful habits and perception of compromised esthetics and social relationships. Given that malocclusion can interfere with the self-esteem of adolescents, it is essential to improve public policy for the inclusion of orthodontic treatment among health care provided to this segment of the population, particularly among those of lower socioeconomic status.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comparative study concerning the robustness of a novel, Fixed Point Transformations/Singular Value Decomposition (FPT/SVD)-based adaptive controller and the Slotine-Li (S&L) approach is given by numerical simulations using a three degree of freedom paradigm of typical Classical Mechanical systems, the cart + double pendulum. The effects of the imprecision of the available dynamical model, presence of dynamic friction at the axles of the drives, and the existence of external disturbance forces unknown and not modeled by the controller are considered. While the Slotine-Li approach tries to identify the parameters of the formally precise, available analytical model of the controlled system with the implicit assumption that the generalized forces are precisely known, the novel one makes do with a very rough, affine form and a formally more precise approximate model of that system, and uses temporal observations of its desired vs. realized responses. Furthermore, it does not assume the lack of unknown perturbations caused either by internal friction and/or external disturbances. Its another advantage is that it needs the execution of the SVD as a relatively time-consuming operation on a grid of a rough system-model only one time, before the commencement of the control cycle within which it works only with simple computations. The simulation examples exemplify the superiority of the FPT/SVD-based control that otherwise has the deficiency that it can get out of the region of its convergence. Therefore its design and use needs preliminary simulation investigations. However, the simulations also exemplify that its convergence can be guaranteed for various practical purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The prediction of the time and the efficiency of the remediation of contaminated soils using soil vapor extraction remain a difficult challenge to the scientific community and consultants. This work reports the development of multiple linear regression and artificial neural network models to predict the remediation time and efficiency of soil vapor extractions performed in soils contaminated separately with benzene, toluene, ethylbenzene, xylene, trichloroethylene, and perchloroethylene. The results demonstrated that the artificial neural network approach presents better performances when compared with multiple linear regression models. The artificial neural network model allowed an accurate prediction of remediation time and efficiency based on only soil and pollutants characteristics, and consequently allowing a simple and quick previous evaluation of the process viability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human mesenchymal stem/stromal cells (MSCs) have received considerable attention in the field of cell-based therapies due to their high differentiation potential and ability to modulate immune responses. However, since these cells can only be isolated in very low quantities, successful realization of these therapies requires MSCs ex-vivo expansion to achieve relevant cell doses. The metabolic activity is one of the parameters often monitored during MSCs cultivation by using expensive multi-analytical methods, some of them time-consuming. The present work evaluates the use of mid-infrared (MIR) spectroscopy, through rapid and economic high-throughput analyses associated to multivariate data analysis, to monitor three different MSCs cultivation runs conducted in spinner flasks, under xeno-free culture conditions, which differ in the type of microcarriers used and the culture feeding strategy applied. After evaluating diverse spectral preprocessing techniques, the optimized partial least square (PLS) regression models based on the MIR spectra to estimate the glucose, lactate and ammonia concentrations yielded high coefficients of determination (R2 ≥ 0.98, ≥0.98, and ≥0.94, respectively) and low prediction errors (RMSECV ≤ 4.7%, ≤4.4% and ≤5.7%, respectively). Besides PLS models valid for specific expansion protocols, a robust model simultaneously valid for the three processes was also built for predicting glucose, lactate and ammonia, yielding a R2 of 0.95, 0.97 and 0.86, and a RMSECV of 0.33, 0.57, and 0.09 mM, respectively. Therefore, MIR spectroscopy combined with multivariate data analysis represents a promising tool for both optimization and control of MSCs expansion processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis submitted in Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa for the degree of Master in Materials Engineering

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coupling five rigid or flexible bis(pyrazolato)based tectons with late transition metal ions allowed us to isolate 18 coordination polymers (CPs). As assessed by thermal analysis, all of them possess a remarkable thermal stability, their decomposition temperatures lying in the range of 340-500 degrees C. As demonstrated by N-2 adsorption measurements at 77 K, their Langmuir specific surface areas span the rather vast range of 135-1758 m(2)/g, in agreement with the porous or dense polymeric architectures retrieved by powder X-ray diffraction structure solution methods. Two representative families of CPs, built up with either rigid or flexible spacers, were tested as catalysts in (0 the microwave-assisted solvent-free peroxidative oxidation of alcohols by t-BuOOH, and (ii) the peroxidative oxidation of cydohexane to cydohexanol and cydohexanone by H2O2 in acetonitrile. Those CPs bearing the rigid spacer, concurrently possessing higher specific surface areas, are more active than the corresponding ones with the flexible spacer. Moreover, the two copper(I)-containing CPs investigated exhibit the highest efficiency in both reactions, leading selectively to a maximum product yield of 92% (and TON up to 1.5 x 10(3)) in the oxidation of 1-phenylethanol and of 11% in the oxidation of cydohexane, the latter value being higher than that granted by the current industrial process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hyperspectral remote sensing exploits the electromagnetic scattering patterns of the different materials at specific wavelengths [2, 3]. Hyperspectral sensors have been developed to sample the scattered portion of the electromagnetic spectrum extending from the visible region through the near-infrared and mid-infrared, in hundreds of narrow contiguous bands [4, 5]. The number and variety of potential civilian and military applications of hyperspectral remote sensing is enormous [6, 7]. Very often, the resolution cell corresponding to a single pixel in an image contains several substances (endmembers) [4]. In this situation, the scattered energy is a mixing of the endmember spectra. A challenging task underlying many hyperspectral imagery applications is then decomposing a mixed pixel into a collection of reflectance spectra, called endmember signatures, and the corresponding abundance fractions [8–10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. Linear mixing model holds approximately when the mixing scale is macroscopic [13] and there is negligible interaction among distinct endmembers [3, 14]. If, however, the mixing scale is microscopic (or intimate mixtures) [15, 16] and the incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [17], the linear model is no longer accurate. Linear spectral unmixing has been intensively researched in the last years [9, 10, 12, 18–21]. It considers that a mixed pixel is a linear combination of endmember signatures weighted by the correspondent abundance fractions. Under this model, and assuming that the number of substances and their reflectance spectra are known, hyperspectral unmixing is a linear problem for which many solutions have been proposed (e.g., maximum likelihood estimation [8], spectral signature matching [22], spectral angle mapper [23], subspace projection methods [24,25], and constrained least squares [26]). In most cases, the number of substances and their reflectances are not known and, then, hyperspectral unmixing falls into the class of blind source separation problems [27]. Independent component analysis (ICA) has recently been proposed as a tool to blindly unmix hyperspectral data [28–31]. ICA is based on the assumption of mutually independent sources (abundance fractions), which is not the case of hyperspectral data, since the sum of abundance fractions is constant, implying statistical dependence among them. This dependence compromises ICA applicability to hyperspectral images as shown in Refs. [21, 32]. In fact, ICA finds the endmember signatures by multiplying the spectral vectors with an unmixing matrix, which minimizes the mutual information among sources. If sources are independent, ICA provides the correct unmixing, since the minimum of the mutual information is obtained only when sources are independent. This is no longer true for dependent abundance fractions. Nevertheless, some endmembers may be approximately unmixed. These aspects are addressed in Ref. [33]. Under the linear mixing model, the observations from a scene are in a simplex whose vertices correspond to the endmembers. Several approaches [34–36] have exploited this geometric feature of hyperspectral mixtures [35]. Minimum volume transform (MVT) algorithm [36] determines the simplex of minimum volume containing the data. The method presented in Ref. [37] is also of MVT type but, by introducing the notion of bundles, it takes into account the endmember variability usually present in hyperspectral mixtures. The MVT type approaches are complex from the computational point of view. Usually, these algorithms find in the first place the convex hull defined by the observed data and then fit a minimum volume simplex to it. For example, the gift wrapping algorithm [38] computes the convex hull of n data points in a d-dimensional space with a computational complexity of O(nbd=2cþ1), where bxc is the highest integer lower or equal than x and n is the number of samples. The complexity of the method presented in Ref. [37] is even higher, since the temperature of the simulated annealing algorithm used shall follow a log( ) law [39] to assure convergence (in probability) to the desired solution. Aiming at a lower computational complexity, some algorithms such as the pixel purity index (PPI) [35] and the N-FINDR [40] still find the minimum volume simplex containing the data cloud, but they assume the presence of at least one pure pixel of each endmember in the data. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. PPI algorithm uses the minimum noise fraction (MNF) [41] as a preprocessing step to reduce dimensionality and to improve the signal-to-noise ratio (SNR). The algorithm then projects every spectral vector onto skewers (large number of random vectors) [35, 42,43]. The points corresponding to extremes, for each skewer direction, are stored. A cumulative account records the number of times each pixel (i.e., a given spectral vector) is found to be an extreme. The pixels with the highest scores are the purest ones. N-FINDR algorithm [40] is based on the fact that in p spectral dimensions, the p-volume defined by a simplex formed by the purest pixels is larger than any other volume defined by any other combination of pixels. This algorithm finds the set of pixels defining the largest volume by inflating a simplex inside the data. ORA SIS [44, 45] is a hyperspectral framework developed by the U.S. Naval Research Laboratory consisting of several algorithms organized in six modules: exemplar selector, adaptative learner, demixer, knowledge base or spectral library, and spatial postrocessor. The first step consists in flat-fielding the spectra. Next, the exemplar selection module is used to select spectral vectors that best represent the smaller convex cone containing the data. The other pixels are rejected when the spectral angle distance (SAD) is less than a given thresh old. The procedure finds the basis for a subspace of a lower dimension using a modified Gram–Schmidt orthogonalizati on. The selected vectors are then projected onto this subspace and a simplex is found by an MV T pro cess. ORA SIS is oriented to real-time target detection from uncrewed air vehicles using hyperspectral data [46]. In this chapter we develop a new algorithm to unmix linear mixtures of endmember spectra. First, the algorithm determines the number of endmembers and the signal subspace using a newly developed concept [47, 48]. Second, the algorithm extracts the most pure pixels present in the data. Unlike other methods, this algorithm is completely automatic and unsupervised. To estimate the number of endmembers and the signal subspace in hyperspectral linear mixtures, the proposed scheme begins by estimating sign al and noise correlation matrices. The latter is based on multiple regression theory. The signal subspace is then identified by selectin g the set of signal eigenvalue s that best represents the data, in the least-square sense [48,49 ], we note, however, that VCA works with projected and with unprojected data. The extraction of the end members exploits two facts: (1) the endmembers are the vertices of a simplex and (2) the affine transformation of a simplex is also a simplex. As PPI and N-FIND R algorithms, VCA also assumes the presence of pure pixels in the data. The algorithm iteratively projects data on to a direction orthogonal to the subspace spanned by the endmembers already determined. The new end member signature corresponds to the extreme of the projection. The algorithm iterates until all end members are exhausted. VCA performs much better than PPI and better than or comparable to N-FI NDR; yet it has a computational complexity between on e and two orders of magnitude lower than N-FINDR. The chapter is structure d as follows. Section 19.2 describes the fundamentals of the proposed method. Section 19.3 and Section 19.4 evaluate the proposed algorithm using simulated and real data, respectively. Section 19.5 presents some concluding remarks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The genomic sequences of the Envelope-Non-Structural protein 1 junction region (E/NS1) of 84 DEN-1 and 22 DEN-2 isolates from Brazil were determined. Most of these strains were isolated in the period from 1995 to 2001 in endemic and regions of recent dengue transmission in São Paulo State. Sequence data for DEN-1 and DEN-2 utilized in phylogenetic and split decomposition analyses also include sequences deposited in GenBank from different regions of Brazil and of the world. Phylogenetic analyses were done using both maximum likelihood and Bayesian approaches. Results for both DEN-1 and DEN-2 data are ambiguous, and support for most tree bipartitions are generally poor, suggesting that E/NS1 region does not contain enough information for recovering phylogenetic relationships among DEN-1 and DEN-2 sequences used in this study. The network graph generated in the split decomposition analysis of DEN-1 does not show evidence of grouping sequences according to country, region and clades. While the network for DEN-2 also shows ambiguities among DEN-2 sequences, it suggests that Brazilian sequences may belong to distinct subtypes of genotype III.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last two decades, small strain shear modulus became one of the most important geotechnical parameters to characterize soil stiffness. Finite element analysis have shown that in-situ stiffness of soils and rocks is much higher than what was previously thought and that stress-strain behaviour of these materials is non-linear in most cases with small strain levels, especially in the ground around retaining walls, foundations and tunnels, typically in the order of 10−2 to 10−4 of strain. Although the best approach to estimate shear modulus seems to be based in measuring seismic wave velocities, deriving the parameter through correlations with in-situ tests is usually considered very useful for design practice.The use of Neural Networks for modeling systems has been widespread, in particular within areas where the great amount of available data and the complexity of the systems keeps the problem very unfriendly to treat following traditional data analysis methodologies. In this work, the use of Neural Networks and Support Vector Regression is proposed to estimate small strain shear modulus for sedimentary soils from the basic or intermediate parameters derived from Marchetti Dilatometer Test. The results are discussed and compared with some of the most common available methodologies for this evaluation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last two decades, small strain shear modulus became one of the most important geotechnical parameters to characterize soil stiffness. Finite element analysis have shown that in-situ stiffness of soils and rocks is much higher than what was previously thought and that stress-strain behaviour of these materials is non-linear in most cases with small strain levels, especially in the ground around retaining walls, foundations and tunnels, typically in the order of 10−2 to 10−4 of strain. Although the best approach to estimate shear modulus seems to be based in measuring seismic wave velocities, deriving the parameter through correlations with in-situ tests is usually considered very useful for design practice.The use of Neural Networks for modeling systems has been widespread, in particular within areas where the great amount of available data and the complexity of the systems keeps the problem very unfriendly to treat following traditional data analysis methodologies. In this work, the use of Neural Networks and Support Vector Regression is proposed to estimate small strain shear modulus for sedimentary soils from the basic or intermediate parameters derived from Marchetti Dilatometer Test. The results are discussed and compared with some of the most common available methodologies for this evaluation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction & Objectives: Several factors may influence the decision to pursue nonsurgical modalities for the treatment of non-melanoma skin cancer. Topical photodynamic therapy (PDT) is a non-invasive alternative treatment reported to have a high efficacy when using standardized protocols in Bowen’s disease (BD), superficial basal cell carcinoma (BCC) and in thin nodular BCC. However, long-term recurrence studies are lacking. The aim of this study was to evaluate the long-term efficacy of PDT with topical methylaminolevulinate (MAL) for the treatment of BD and BCC in a dermato-oncology department. Materials & Methods: All patients with the diagnosis of BD or BCC, treated with MAL-PDT from the years 2004 to 2008, were enrolled. Treatment protocol included two MAL-PDT sessions one week apart repeated at three months when incomplete response, using a red light dose of 37-40 J/cm2 and an exposure time of 8’20’’. Clinical records were retrospectively reviewed, and data regarding age, sex, tumour location, size, treatment outcomes and recurrence were registered. Descriptive analysis was performed using chi square tests, followed by survival analysis with the Kaplan-Meier and Cox regression models. Results: Sixty-eight patients (median age 71.0 years, P25;P75=30;92) with a total of 78 tumours (31 BD, 45 superficial BCC, 2 nodular BCC) and a median tumour size of 5 cm2 were treated. Overall, the median follow-up period was 43.5 months (P25;P75=0;100), and a total recurrence rate of 33.8% was observed (24.4 % for BCC vs. 45.2% for BD). Estimated recurrence rates for BCC and BD were 5.0% vs. 7.4% at 6 months, 23.4% vs. 27.9% at 12 months, and 30.0% vs. 72.4% at 60 months. Both age and diagnosis were independent prognostic factors for recurrence, with significantly higher estimated recurrence rates in patients with BD (p=0.0036) or younger than 58 years old (p=0.039). The risk of recurrence (hazard ratio) was 2.4 times higher in patients with BD compared to superficial BCC (95% CI:1.1-5.3; p=0.033), and 2.8 times higher in patients younger than 58 years old (95% CI:1.2-6.5; p=0.02). Conclusions: In the studied population, estimated recurrence rates are higher than those expected from available literature, possibly due to a longer follow-up period. To the authors’ knowledge there is only one other study with a similar follow-up period, regarding BCC solely. BD, as an in situ squamous cell carcinoma, has a higher tendency to recur than superficial BCC. Despite greater cosmesis, PDT might no be the best treatment option for young patients considering their higher risk of recurrence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation to obtain the degree of Master in Electrical and Computer Engineering

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Informática

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Engenharia do Ambiente