984 resultados para Redox reactions
Resumo:
A number of macroporous metal oxide foams were prepared through self-sustained combustion reactions starting from dough made of the corresponding metal nitrate, urea and starch. The nitrate ion acts as an oxidizing agent, urea as fuel and starch as an organic binder. The metal oxide foams are characterized by scanning electron microscopy and powder X-ray diffraction.
Resumo:
Fine particle FeVO4, AIVO4, YVO4 and Yo.95Eu0.05VO4 have been prepared by the combustion of aqueous solutions containing corresponding metal nitrate, ammonium metavanadate, ammonium nitrate and 3-methyl-5-pyrazolone.The solutions containing the redox mixtures, when rapidly heated at 370 °C, ignite and undergo self-propagating,gas-producing, exothermic reactions to yield fine particle metal vanadates. Formation of crystalline vanadates was confirmed by powder X-ray diffraction patterns,27A1 nuclear magnetic resonance, IR and fluorescence spectra.
Resumo:
Pt ions-CeO2 interaction in Ce1-xPtxO2-delta (x=0.02) has been studied for the first time by electrochemical method combined with x-ray diffraction and x-ray photoelectron spectroscopy. Working electrodes made of CeO2 and Ce0.98Pt0.02O2-delta mixed with 30% carbon are treated electrochemically between 0.0-1.2 V in potentiostatic (chronoamperometry) and potentiodynamic (cyclic voltametry) mode with reference to saturated calomel electrode. Reversible oxidation of Pt-0 to Pt2+ and Pt4+ state due to the applied positive potential is coupled to simultaneous reversible reduction of Ce4+ to Ce3+ state. CeO2 reduces to CeO2-y (y=0.35) after applying 1.2 V, which is not reversible; Ce0.98Pt0.02O2-delta reaches a steady state with Pt2+:Pt4+ in the ratio of 0.60:0.40 and Ce4+:Ce3+ in the ratio of 0.55:0.45 giving a composition Ce0.98Pt0.02O1.74 at 1.2 V, which is reversible. Composition of Pt ion substituted compound is reversible between Ce0.98Pt0.02O1.95 to Ce0.98Pt0.02O1.74 within the potential range of 0.0-1.2 V. Thus, Ce0.98Pt0.02O2-delta forms a stable electrode for oxidation of H2O to O-2 unlike CeO2. A linear relation between oxidation of Pt2+ to Pt4+ with simultaneous reduction in Ce4+ to Ce3+ is observed demonstrating Pt-CeO2 metal support interaction is due to reversible Pt-0/Pt2+/Pt4+ interaction with Ce4+/Ce3+ redox couple.
Resumo:
Evidence of the initiation process during uncatalyzed thermal polymerization of vinyl monomers is presented. DSC studies reveal a prominent endothermic effect just before the polymerization exotherm, which is substantiated by the identification of the free radicals produced in the initiation by a quick quenching technique and subsequent detection by ESR at low temperatures.
Resumo:
Binuclear complexes of rhodium(I) of the type [(dien)(X)Rh(μ-N-N)Rh(X)(dien)] (dien = 1,5-cyclooctadiene or norbornadiene; N-N = pyrazine, 4,4′-bipyridine or Phenazine and X = Cl or Br) with bridging heterocycles have been isolated and their reactions with carbon monoxide, 2,2′-bipyridine and 1,10-phenanthroline investigated. The crystal structure of [(COD)(Cl)Rh(μ-pyrazine)Rh(Cl)(COD)] has been determined.
Resumo:
In a previous paper, we described the room temperature rapid, selective, reversible, and near quantitative Cu-activated nitroxide radical coupling (NRC) technique to prepare 3-arm polystyrene stars. In this work, we evaluated the Cu-activation mechanism, either conventional atom transfer or single electron transfer (SET), through kinetic simulations. Simulation data showed that one can describe the system by either activation mechanism. We also found through simulations that bimolecular radical termination, regardless of activation mechanism, was extremely low and could be considered negligible in an NRC reaction. Experiments were carried out to form 2- and 3-arm PSTY stars using two ligands, PMDETA and Me6TREN, in a range of solvent conditions by varying the ratio of DMSO to toluene, and over a wide temperature range. The rate of 2- or 3-arm star formation was governed by the choice of solvent and ligand. The combination of Me6TREN and toluene/DMSO showed a relatively temperature independent rate, and remarkably reached near quantitative yields for 2-arm star formation after only 1 min at 25 °C.
Resumo:
High activation of polystyrene with bromine end groups (PSTY-Br) to their incipient radicals occurred in the presence of Cu(I)Br, Me6TREN, and DMSO solvent. These radicals were then trapped by nitroxide species leading to coupling reactions between PSTY-Br and nitroxides that were ultrafast and selective in the presence of a diverse range of functional groups. The nitroxide radical coupling (NRC) reactions have the attributes of a “click” reaction with near quantitative yields of product formed, but through the reversibility of this reaction, it has the added advantage of permitting the exchange of chemical functionality on macromolecules. Conditions were chosen to facilitate the disproportionation of Cu(I)Br to the highly activating nascent Cu(0) and deactivating Cu(II)Br2 in the presence of DMSO solvent and Me6TREN ligand. NRC at room temperature gave near quantitative yields of macromolecular coupling of low molecular weight polystyrene with bromine chain-ends (PSTY-Br) and nitroxides in under 7 min even in the presence of functional groups (e.g., −≡, −OH, −COOH, −NH2, =O). Utilization of the reversibility of the NRC reaction at elevated temperatures allowed the exchange of chain-end groups with a variety of functional nitroxide derivatives. The robustness and orthogonality of this NRC reaction were further demonstrated using the Cu-catalyzed azide/alkyne “click” (CuAAC) reactions, in which yields greater than 95% were observed for coupling between PSTY-N3 and a PSTY chain first trapped with an alkyne functional TEMPO (PSTY-TEMPO-≡).
Resumo:
The methoxycyclophosphazenes [NP(OMe),], (n = 3-6) rearrange on heating to give oxocyclophosphazanes, [N(Me)PO(OMe)],. Isomeric products are formed when n = 4-6. The lH, ,lP, and 13C n.m.r. data for the starting materials and the products are presented. The ethoxy- and n-propoxy-derivatives N,P,( OR)* do not undergo the above rearrangement. The geminal derivatives N,P,R,(OMe), (R = Ph or NHBut) on heating yield both fully and partially rearranged products, namely dioxophosphaz-1 -enes and oxophosphazadienes, as shown by 270- MHz lH n.m.r. spectroscopy. The non-geminal derivative N,P,( NMe,),(OMe), gives only the fully rearranged product N,Me,P,(NMe,),O,(OMe), whose structure has been established from its lH and 31P n.m.r. spectra.
Resumo:
Preferential yield of ring expansion and rearrangement products through α-cleavage of tetramethyl-3-thio-1,3-cyclobutanedione (1) and 3-mercapto-2,2,4-trimethyl-3-pentenoic acid β-(thio lactone) (2) involving diradical and carbene has been observed upon photolysis of 1 and 2.
Resumo:
Using the mycelial reactions of 435 combinations of 14 Fusarium pseudograminearum and 15 F. graminearum isolates, it was demonstrated for the first time that mycelial reactions/barrage formation cannot be clearly used to distinguish F. graminearum and F. pseudograminearum. Mutually compatible isolates produced very different patterns of compatibility with other isolates. However, about 60% of pairings between F. graminearum and F. pseudograminearum isolates were compatible, indicating common ancestry. The Mantel tests used to determine any possible associations between mycelial compatibility reactions and AFLP genotypic diversity data revealed no association between the two systems in either species. In addition, no association was found between mycelial compatibility reactions and sexual reproduction in the two species. Implications of the higher frequency of mycelial compatibility reactions observed in F. pseudograminearum than in F. graminearum are discussed.
Resumo:
Arylalkylcyclopropenethiones undergo highly regioselective photochemical a-cleavage via thioketene carbene intermediates, giving rise to products derived from the less stabilized carbene. UHF MIND0/3 calculations provide an insight into this unexpected regioselectivity. The nx* triplet of cyclopropenethione is calculated to have a highly unsymmetrical geometry with an elongated C-C bond, a delocalized thiaaUyl fragment, and a pyramidal radicaloid carbon (which eventually becomes the carbene center). From this molecular electronic structure, aryl group stabilization is expected to be more effective at the thiaallyl group rather than at the pyramidal radical center. Thus, the stability of the substituted triplet thione rather than that of the thioketene carbene determines the preferred regiochemistry of cleavage. The unusual structure of the cyclopropenethione triplet is suggested to be related to one of the Jahn-Teller distorted forms of the cyclopropenyl radical. An alternative symmetrical structure is adopted by the corresponding triplet of cyclopropenone, partly accounting for its differing photobehavior. A similar structural dichotomy is demonstrated for the corresponding radical anions as well.
Resumo:
Hexafluorodisilane has been prepared by the fluorination of hexachlorodisilane or hexabromodisilane by potassium fluoride in boiling acetonitrile, in yields approximating 45 and 60% respectively. Hexafluorodisilane has been characterised by infrared spectral data, vapour density measurements and analytical data. Both hexafluorodisilane and hexachlorodisilane are found to react with sulfur trioxide when heated to 400°C for 12 h. The products of reaction are silicon tetrafluoride, silica and sulfur dioxide with hexafluorodisilane while hexachlorodisilane in addition gives rise to hexachlorodisiloxane.