971 resultados para Receptor antagonist
Resumo:
This study evaluated the participation of mu-opioid-receptor activation in body temperature (T-b) during normal and febrile conditions (including activation of heat conservation mechanisms) and in different pathways of LPS-induced fever. The intracerebroventricular treatment of male Wistar rats with the selective opioid mu-receptor-antagonist cyclic D-Phe-Cys-Try-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP; 0.1-1.0 mu g) reduced fever induced by LPS (5.0 mu g/kg) but did not change Tb at ambient temperatures of either 20 C or 28 C. The subcutaneous, intracerebroventricular, and intrahypothalamic injection of morphine (1.0 -10.0 mg/kg, 3.0 -30.0 mu g, and 1 -100 ng, respectively) produced a dose-dependent increase in Tb. Intracerebroventricular morphine also produced a peripheral vasoconstriction. Both effects were abolished by CTAP. CTAP (1.0 mu g icv) reduced the fever induced by intracerebroventricular administration of TNF-alpha (250 ng), IL-6 (300 ng), CRF (2.5 mu g), endothelin-1 (1.0 pmol), and macrophage inflammatory protein (500 pg) and the first phase of the fever induced by PGF(2 alpha) (500.0 ng) but not the fever induced by IL-1 beta (3.12 ng) or PGE(2) (125.0 ng) or the second phase of the fever induced by PGF(2 alpha). Morphine-induced fever was not modified by the cyclooxygenase (COX) inhibitor indomethacin (2.0 mg/kg). In addition, morphine injection did not induce the expression of COX-2 in the hypothalamus, and CTAP did not modify PGE2 levels in cerebrospinal fluid or COX-2 expression in the hypothalamus after LPS injection. In conclusion, our results suggest that LPS and endogenous pyrogens (except IL-1 beta and prostaglandins) recruit the opioid system to cause a mu-receptor-mediated fever.
Resumo:
This study investigates the effects of chronic methionine intake on bradykinin (BK)-relaxation. Vascular reactivity experiments were performed on carotid rings from male Wistar rats. Treatment with methionine (0.1, 1 or 2 g kg(-1) per day) for 8 and 16 weeks, but not for 2 and 4 weeks, reduced the relaxation induced by BK. Indomethacin, a non-selective cyclooxygenase (COX) inhibitor, and SQ29548, a selective thromboxane A(2) (TXA(2))/prostaglandin H(2) (PGH(2)) receptor antagonist prevented the reduction in BK-relaxation observed in the carotid from methionine-treated rats. Conversely, AH6809, a selective prostaglandin F(2 alpha) (PGF(2 alpha)) receptor antagonist did not alter BK-relaxation in the carotid from methionine-treated rats. The nitric oxide synthase (NOS) inhibitors L-NAME, L-NNA and 7-nitroindazole reduced the relaxation induced by BK in carotids from control and methionine-treated rats. In summary, we found that chronic methionine intake impairs the endothelium-dependent relaxation induced by BK and this effect is due to an increased production of endothelial vasoconstrictor prostanoids (possibly TXA(2)) that counteracts the relaxant action displayed by the peptide.
Resumo:
The perivascular nerve network expresses a Ca(2+) receptor that is activated by high extracellular Ca(2+) concentrations and causes vasorelaxation in resistance arteries. We have verified the influence of perivascular nerve fibers on the Ca(2+)-induced relaxation in aortic rings. To test our hypothesis, either pre-contracted aortas isolated from rats after sensory denervation with capsaicin or aortic rings acutely denervated with phenol were stimulated to relax with increasing extracellular Ca(2+) concentration. We also studied the role of the endothelium on the Ca(2+)-induced relaxation, and we verified the participation of endothelial/nonendothelial nitric oxide and cyclooxygenise-arachidonic acid metabolites. Additionally, the role of the sarcoplasmic reticulum, K(+) channels and L-type Ca(2+) channels on the Ca(2+)-induced relaxation were evaluated. We have observed that the Ca(2+)-induced relaxation is completely nerve independent, and it is potentiated by endothelial nitric oxide (NO). In endothelium-denuded aortic rings, indomethacin and AH6809 (PGF(2 alpha) receptor antagonist) enhance the relaxing response to Ca(2+). This relaxation is inhibited by thapsigargin and verapamil, while was not altered by tetraethylammonium. In conclusion, we have shown that perivascular nervous fibers do not participate in the Ca(2+)-induced relaxation, which is potentiated by endothelial NO. In endothelium-denuded preparations, indomethacin and AH6809 enhance the relaxation induced by Ca(2+). The relaxing response to Call was impaired by verapamil and thapsigargin, revealing the importance of L-type Ca(2+) channels and sarcoplasmic reticulum in this response. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
1 We have recently suggested the existence in the heart of a 'putative beta(4)-adrenoceptor' based on the cardiostimulant effects of non-conventional partial agonists, compounds that cause cardiostimulant effects at greater concentrations than those required to block beta(1)- and Bz-adrenoceptors. We sought to obtain further evidence by establishing and validating a radioligand binding assay for this receptor with (-)-[H-3]-CGP 12177A ((-)-4-(3-tertiarybutylamino-2-hydroxypropoxy) benzimidazol-2-one) in rat atrium. We investigated (-)-[H-3]-CGP 12177A for this purpose for two reasons, because it is a nonconventional partial agonist and also because it is a hydrophilic radioligand. 2 Increasing concentrations of(-)-[H-3]-CGP 12177A, in the absence or presence of 20 mu M (-)-CGP 12177A to define non-specific binding, resulted in a biphasic saturation isotherm. Low concentrations bound to beta(1)- and beta(2)-adrenoceptors (pK(D) 9.4+/-0.1, B-max 26.9+/-3.1 fmol mg(-1) protein) and higher concentrations bound to the 'putative beta(4)-adrenoceptor' (pK(D) 7.5+/-0.1, B-max 47.7+/-4.9 fmol mg(-1) protein). In other experiments designed to exclude beta(1)- and beta(2)-adrenoceptors, (-)-[H-3]-CGP 12177A (1-200 nM) binding in the presence of 500 nM (-)-propranolol was also saturable (pK(D) 7.6+/-0.1, B-max 50.8+/-7.4 fmol mg(-1) protein). 3 The non-conventional partial agonists (-)-CGP 12177A (pK(i) 7.3+/-0.2), (+/-)-cyanopindolol (pK(i) 7.6+/-0.2), (-)-pindolol (pK(i) 6.6+/-0.1) and (+)-carazolol (pk(i), 7.2+/-0.2) and the antagonist (-)-bupranolol (pK(i) 6.6+/-0.2), all competed for (-)-[H-3]-CGP 12177A binding in the presence of 500 nM (-)-propranolol at the 'putative beta(4)-adrenoceptor', with affinities closely similar to potencies and affinities determined in organ bath studies. 4 The catecholamines competed with (-)-[H-3]-CGP 12177A at the 'putative beta(4)-adrenoceptor' in a stereoselective manner, (-)-noradrenaline (pK(iH) 6.3 +/- 0.3, pK(i), 3.5 +/- 0.1), (-)-adrenaline (pK(iH) 6.5 +/- 0.2, pK(iL) 2.9 +/- 0.1), (-)-isoprenaline (pK(iH) 6.2 +/- 0.5, pK(iL) 3.3 +/- 0.1), (+)-isoprenaline (pK(i) < 1.7), (-)-R0363 ((-)-(1-(3,4-dimethoxyphenethylamino)-3-(3,4-dihydroxyphenoxy)-2-propranol)oxalate, pK(i) 5.5 +/- 0.1). 5 The inclusion of guanosine 5-triphosphate (GTP 0.1 mM) had no effect on binding of (-)-CGP 12177A or (-)-isoprenaline to the 'putative beta(4)-adrenoceptor'. In competition binding studies, (-)-CGP 12177A competed with (-)-[H-3]-CGP 12177A for one receptor state in the absence (pK(i) 7.3 +/- 0.2) or presence of GTP (pK(i) 7.3 +/- 0.2). (-)-Isoprenaline competed with (-)-[H-3]-CGP 12177A for two states in the absence (pK(iH) 6.6 +/- 0.3, pK(iL) 3.5 +/- 0.1; % H 25 +/- 7) or presence of GTP (pK(iH) 6.2 +/- 0.5, pK(iL) 3.4 +/- 0.1; % H 37 +/- 6). In contrast, at beta(1)-adrenoceptors, GTP stabilized the low affinity state of the receptor for (-)-isoprenaline. 6 The specificity of binding to the 'putative beta(4)-adrenoceptor' was tested with compounds active at other receptors. High concentrations of the beta(4)-adrenoceptor agonists, BRL 37344 ((RR + SS)[4-[2-[[2-(3-chlorophenyl)-2-hydroxy -ethyl]amino]propyl]phenoxy]acetic acid, 6 mu M), SR 58611A (ethyl((7S)-7-[(2R)-2-(3-chlorophenyl)-2-hydroxyethylamino]-5,6,7,8-tetrahydronaphtyl-2-yloxy) acetate hydrochloride, 6 mu M), ZD 2079 ((+/-)-1-phenyl-2-(2-4-carboxymethylphenoxy)-ethylamino)ethan-1-ol, 60 mu M), CL 316243 (disodium (R,R)-5-[2-[2-(3-chlorophenyl)-2-hydroxyethyl-amino]propyl]- 1,3-benzodioxole-2,2-dicarboxylate, 60 mu M) and antagonist SR 59230A (3-(2-ethylphenoxy)-1-[(1S)-1,2,3,4-tetrahydronaphth-1-ylamino]-2S-2-propanol oxalate, 6 mu M) caused less than 22% inhibition of (-)-[H-3]-CGP 12177A binding in the presence of 500 nM (-)-propranolol. Histamine (1 mM), atropine (1 mu M), phentolamine (10 mu M), 5-HT(100 mu M) and the 5-HT4 receptor antagonist SE 207710 ((1-butyl-4-piperidinyl)-methyl 8-amino-7-iodo-1 ,4-benzodioxan-5-carboxylate, 10 nM) caused less than 26% inhibition of binding. 7 Non-conventional partial agonists, the antagonist (-)-bupranolol and catecholamines all competed for (-)-[H-3]-CGP 12177A binding in the absence of (-)-propranolol at beta(1)-adrenoceptors, with affinities (pK(i)) ranging from 1.6-3.6 log orders greater than at the 'putative beta(4)-adrenoceptor'. 8 We have established and validated a radioligand binding assay in rat atrium for the 'putative beta(4)-adrenoceptor' which is distinct from beta(1)-, beta(2)- and beta(3)-adrenoceptors. The stereoselective interaction with the catecholamines provides further support for the classification of the receptor as 'putative beta(4)-adrenoceptor'.
Resumo:
Hydromorphone-3-glucuronide (H3G) was synthesized biochemically using rat liver microsomes, uridine-5'-diphosphoglucuronic acid (UDPGA) and the substrate, hydromorphone. Initially, the crude putative H3G product was purified by ethyl acetate precipitation and washing with acetonitrile, Final purification was achieved using semi-preparative high-performance-liquid-chromatography (HPLC) with ultraviolet (UV) detection. The purity of the final H3G product was shown by HPLC with electrochemical and ultraviolet detection to be > 99.9% and it was produced in a yield of approximate to 60% (on a molar basis). The chemical structure of the putative H3G was confirmed by enzymatic hydrolysis of the glucuronide moiety using P-glucuronidase, producing a hydrolysis product with the same HPLC retention time as the hydromorphone reference standard. Using HPLC with tandem mass spectrometry (HPLC-MS-MS) in the positive ionization mode, the molecular mass (M+1) was found to be 462 g/mol, in agreement with H3G's expected molecular weight of 461 g/mol. Importantly, proton-NMR indicated that the glucuronide moiety was attached at the 3-phenolic position of hydromorphone. A preliminary evaluation of H3G's intrinsic pharmacological effects revealed that following icy administration to adult male Sprague-Dawley rats in a dose of 5 mu g, H3G evoked a range of excitatory behavioural effects.including chewing, rearing, myoclonus, ataxia and tonic-clonic convulsions, in a manner similar to that reported previously for the glucuronide metabolites of morphine, morphine-3-glucuronide and normorphine-3-glucuronide.
Resumo:
Recent evidence suggests that dopamine, acting via its D1 receptors, may function as a neurotransmitter in intrahypothalamic pathways involved in the stimulation of prolactin secretion. Functional dopamine D1 receptors are present in the ventromedial hypothalamic nucleus (VMH) and we hypothesized that they might be part of a prolactin-stimulatory pathway activated by stress. We tested this hypothesis in a series of experiments on sheep involving two different forms of stressors, audiovisual (barking dog) and high environmental temperature. We attempted to block the stimulation of prolactin secretion by infusion into the VMH of an antagonist specific for the D1 receptor. Ovariectomised, oestradiol-implanted merino ewes were surgically implanted with bilateral guide tubes directed at the VMH. After a 180 min pretreatment period, the ewes either were or were not exposed to a stressor (30 min of barking dog or 120 min at 35 degrees C, 65% relative humidity). D1 receptor antagonist, SCH23390 or vehicle (0.9% saline) was infused into the VMH (1.7 mu l/h, 120 nmol/h) for 60 min prior to and during the stressor period. Blood was sampled every 15 min via jugular cannulae and the plasma was assayed for prolactin, cortisol and growth hormone (GH). Both stressors significantly increased prolactin concentrations over control levels. SCH23390 infusion significantly attenuated the prolactin response to high environmental temperature, but had no effect on the prolactin response to audiovisual stress. Cortisol concentrations were significantly increased by audiovisual stress only and were not affected by SCH23390, GH concentrations were not changed by either stressor or infusion. Drug infusion alone did not affect the concentration of the hormones. The data suggest that the VMH D1 receptors are involved in a prolactin stimulatory pathway in response to high environmental temperature. The inability of the D1 antagonist to affect the response to the barking dog indicates that this pathway is stress-specific, implying that there is more than one mechanism or pathway involved in the prolactin response to different stressors.
Resumo:
Whole-cell patch clamp recordings were made from pyramidal neurons in the rat lateral amygdala (LA). Synaptic currents were evoked by stimulating in either the external capsule (ec), internal capsule (ic) or basolateral nucleus (BLA). Stimulation of either the ic, ec or BLA evoked a glutamatergic excitatory synaptic current (EPSC) which was mediated by both non-NMDA and NMDA (N-methyl-D-aspartic acid) receptors, The ratio of the amplitude of the NMDA receptor-mediated component measured at +40 mV to the amplitude of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) component measured at -60 mV was similar regardless of whether EPSCs were evoked in the ec, ic or BLA. At resting membrane potentials, excitatory synaptic potentials evoked from either the ec or putative thalamic inputs were unaffected by application of the NMDA receptor antagonist APV. Spontaneous glutamatergic currents had two components to their decay phase. The slow component was selectively blocked by the NMDA receptor antagonist D-APV, indicating that AMPA and NMDA receptors are colocalized in spiny neurons. We conclude that pyramidal cells of the LA receive convergent inputs from the cortex, thalamus and basal nuclei. At all inputs, both AMPA/kainate and NMDA-type receptors are active and colocalized in the postsynaptic density.
Resumo:
Two alpha-conotoxins PnIA and PnIB (previously reported as being mollusc specific) which differ in only two amino acid residues (AN versus LS at residues 10 and 11, respectively), show markedly different inhibition of the neuronal nicotinic acetylcholine receptor response in bovine chromaffin cells, a mammalian preparation. Whereas alpha-conotoxin PnIB completely inhibits the nicotine-evoked catecholamine release at 10 mu M, with IC50 = 0.7 mu M, alpha-conotoxin PnIA is some 30-40 times less potent. Two peptide analogues, [A10L]PnIA and [N11S]PnIA were synthesized to investigate the extent to which each residue contributes to activity. [A10L]PnIA (IC50 = 2.0 mu M) completely inhibits catecholamine release at 10 mu M whereas [N11S]PnIA shows Little inhibition. In contrast, none of the peptides inhibit muscle-type nicotinic responses in the rat hemi-diaphragm preparation. We conclude that the enhanced potency of alpha-conotoxin PnIB over alpha-conotoxin PnIA in the neuronal-type nicotinic response is principally determined by the larger, more hydrophobic leucine residue at position 10 in alpha-conotoxin PnIB. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Ultra-rapid opioid detoxification (UROD) involves the acceleration of opioid withdrawal hv administering thp opioid receptor antagonist naltrexone under general anaesthesia. There is evidence from uncontrolled and a few controlled studies that UROD accelerates opioid withdrawal and that it achieves high rates of completion of acute opioid withdrawal. However, there is clear evidence that the use of a general anaesthetic is not required to accelerate withdrawal or to achieve high rates of completion of acute opioid withdrawal. These goals can be achieved by using naltrexone or naloxone to accelerate withdrawal under light sedation, a procedure known as rapid opioid detoxification under sedation (ROD). There is also evidence that use of an opioid antagonist is not required to achieve a high rate of completion of acute opioid withdrawal. The mixed agonist-antagonist buprenorphine has achieved comparable rates of completion in similarly selected patients with fewer withdrawal symptoms. There is no evidence from controlled trials that either UROD or ROD increases the rate of abstinence from opioids 6 or 12 months after withdrawal. UROD and ROD may increase the number of patients who are inducted onto naltrexone maintenance (NM) therapy but extensive experience with NM therapy suggests that it only has a limited role in selected patients. Given the lack of evidence of substantially increased rates of abstinence, and the need for anaesthetists and high dependency beds, UROD has at best a very minor role in the treatment of a handful of opioid dependent patients who are unable to complete withdraw in any other way. ROD may have more of a role as one option for opioid withdrawal in well motivated patients who want to be rapidly inducted onto NM therapy or who want to enter other types of abstinence-oriented treatment.
Resumo:
The aims of this study were to examine the plasma concentrations of inflammatory mediators including cytokines induced by a single bout of eccentric exercise and again 4 weeks later by a second bout of eccentric exercise of the same muscle group. Ten untrained male subjects performed two bouts of the eccentric exercise involving the elbow flexors (6 sets of 5 repetitions) separated by four weeks. Changes in muscle soreness, swelling, and function following exercise were compared between the bouts. Blood was sampled before, immediately after, 1 h, 3 h, 6 h, 24 h (1 d), 48 h (2 d), 72 h (3 d), 96 h (4 d) following exercise bout to measure plasma creatine kinase (CK) activity, plasma concentrations of myoglobin (Mb), interleukin (IL)-1 beta, IL-1 receptor antagonist (IL-1ra), IL-4, IL-6, IL-8, IL-10, IL-12p40, tumor necrosis factor (TNF)-alpha, granulocyte colony-stimulating factor (G-CSF), myeloperoxidase (MPO), prostaglandin E-2 (PGE(2)), heat shock protein (HSP) 60 and 70. After the first bout, muscle soreness increased significantly, and there was also significant increase in upper arm circumference; muscle function decreased and plasma CK activity and Mb concentration increased significantly. These changes were significantly smaller after the second bout compared to the first bout, indicating muscle adaptation to the repeated bouts of the eccentric exercise. Despite the evidence of greater muscle damage after the first bout, the changes in cytokines and other inflammatory mediators were quite minor, and considerably smaller than that following endurance exercise. These results suggest that eccentric exercise-induced muscle damage is not associated with the significant release of cytokines into the systemic circulation. After the first bout, plasma G-CSF concentration showed a small but significant increase, whereas TNF-alpha and IL-8 showed significant decreases compared to the pre-exercise values. After the second bout, there was a significant increase in IL-10, and a significant decrease in IL-8. In conclusion, although there was evidence of severe muscle damage after the eccentric exercise, this muscle damage was not accompanied by any large changes in plasma cytokine concentrations. The minor changes in systemic cytokine concentration found in this study might reflect more rapid clearance from the circulation, or a lack of any significant metabolic or oxidative demands during this particular mode of exercise. In relation to the adaptation to the muscle damage, the anti-inflammatory cytokine IL-10 might work as one of the underlying mechanisms of action.
Resumo:
Aims: The beta-adrenergic and 5-HT(1A) receptor antagonist pindolol has been used in combination with antidepressant drugs, to shorten the time of onset of clinical efficacy and/or increase the proportion of responders in depressive and anxiety disorders. The aim of this study was to examine the interaction between pindolol and the selective serotonin reuptake inhibitor (SSRI), paroxetine in rats submitted to the elevated T-maze (ETM). Main methods: For assessing the drug combination effect, rats were administered with pindolol before paroxetine, using oral or intraperitoneal (i.p.) routes of acute administration, and were submitted to the ETM model. Key findings: The highest dose of pindolol used (15.0 mg/kg, i.p.) increased both inhibitory avoidance and escape latencies in the ETM, probably due to nonspecific motor deficit, since locomotion in a circular arena was also significantly decreased. The highest dose of paroxetine (3.0 mg/kg, i.p.) selectively impaired escape, considered a panicolytic effect. Combination of pindolol (5.0 mg/kg, i.p.) with an ineffective dose of paroxetine (1.5 mg/kg, i.p.) impaired escape, indicating a potentiation of the panicolytic effect of paroxetine. By the oral route, neither paroxetine (3.0 mg/kg) nor pindolol (5.0 mg/kg) alone were effective, but the combination treatment had a marked panicolytic effect, again indicating drug potentiation. Significance: The present results show that the combination of the ineffective doses of pindolol and paroxetine significantly increased escape latency, indicating a selective panicolytic effect. These findings give preclinical support for the use of this drug combination in the treatment of panic disorder (PD). (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Chronic administration of antidepressants such as fluoxetine and imipramine increases the responsiveness of 5-HT(1A) receptors in dorsal periaqueductal grey matter (DPAG), a midbrain area consistently implicated in the pathogenesis of panic disorder. This effect has been related to the clinically relevant anti-panic action of these drugs. In this study we determined whether long-term administration of fluoxetine also affects 5-HT efflux in DPAG. As a comparison, the effect of chronic treatment with the anxiolytic 5-HT(1A) receptor agonist buspirone on DPAG 5-HT levels was assessed. We also investigated whether the inhibitory effect of chronic fluoxetine on escape behaviour in the rat elevated T-maze, considered as a panicolytic-like effect, is counteracted by intra-DPAG injection of the 5-HT(1A) receptor antagonist WAY 100635. Male Wistar rats were treated (1 or 21 d, i.p.) with fluoxetine, buspirone or vehicle, once daily. After treatment, 5-HT in DPAG was measured by in-vivo microdialysis coupled to HPLC. In another study, rats treated (21 d, i.p.) with either fluoxetine or vehicle also received intra-DPAG injection of WAY 100635 or saline 10 min before being tested in the elevated T-maze. Chronic, but not acute, administration of fluoxetine significantly raised extracellular levels of 5-HT in DPAG. Long-term treatment with buspirone was ineffective. In the elevated T-maze, intra-DPAG injection of WAY 100635 fully blocked the anti-escape effect of chronic administration of fluoxetine. Therefore, chronic fluoxetine facilitates 5-HT(1A)-mediated neurotransmission within DPAG and this effect accounts for the panicolytic-like effect of this antidepressant in the elevated T-maze.
Effect of estradiol benzoate microinjection into the median raphe nucleus on contextual conditioning
Resumo:
Estrogen deficiency has been associated with stress, anxiety and depression. Estrogen receptors have been identified in the median raphe nucleus (MRN). This structure is the main source of serotonergic projections to the hippocampus, a forebrain area implicated in the regulation of defensive responses and in the resistance to chronic stress. There is reported evidence indicating that estrogen modulates 5-HT(1A) receptor function. In the MRN, somatodendritic 5-HT(1A) receptors control the activity of serotonergic neurones by negative feedback. The present study has evaluated the effect of intra-MRN injection of estradiol benzoate (EB, 600 or 1200 ng/0.2 mu l) on the performance of ovariectormized rats submitted to contextual conditioning. Additionally, the same treatment was given after intra-MRN injection of Way 100635 (100 ng/0.2 mu l). a 5-HT(1A) receptor antagonist. Both doses of EB decreased freezing and increased rearing, indicating an anxiolytic effect. Pretreatment with Way 100635 antagonized the anxiolytic effect of estradiol. On the basis of these results, it may be suggested that estrogens modulate anxiety by acting on 5-HT(1A) receptors localized in the MRN. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We have recently shown that morphine withdrawal sensitizes the neural substrates of fear in the midbrain tectum structures-the dorsal periaqueductal gray (dPAG) and inferior colliculus (IC). In the present study, we investigated the role of mu- and kappa-opioid receptors in the mediation of these effects. Periadolescent rats chronically treated with morphine (10 mg/kg; s.c.) twice daily for 10 days were implanted with an electrode glued to a guide-cannula into the dPAG or the IC. Forty-eight hours after the interruption of this treatment, the effects of intra-dPAG or intra-IC microinjections of [D-Ala(2) N-Me-Phe(4) Gly(5)-ol]-enkephalin (DAMGO; 0.6 and 1 nmol/0.2 mu l) - a selective mu-receptor agonist - or nor-binaltorphimine (BNI; 2.5 and 5 mu g/0.2 mu l) - a selective K-receptor antagonist with tardive action - on the freezing and escape thresholds determined by electrical stimulation of the dPAG and the IC were examined. For both structures, morphine withdrawal produced pro-aversive effects. DAMGO and BNI had antiaversive effects when injected into the dPAG and IC of non-dependent rats. In morphine-withdrawn rats, only BNI continued to promote antiaversive effects in both structures. Whereas DAMGO lost its antiaversive efficacy when injected into the dPAG, only its highest dose promoted antiaversive effects in the IC of morphine-withdrawn rats, suggesting the development of an apparent tolerance. Thus, the enhanced reactivity of the midbrain tectum in morphine-withdrawn periadolescent rats may be due, at least partially, to an impairment of the inhibitory influence of mechanisms mediated by mu-receptors on the neural substrates of fear in this region. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The beta-adrenergic blocker and 5-HT(1A) receptor antagonist pindolol has been combined with selective serotonin reuptake inhibitors (SSRIs) in patients with depressive and anxiety disorders to shorten the onset of the clinical action and/or increase the proportion of responders. The results of a previous study have shown that pindolol potentiates the panicolytic effect of paroxetine in rats submitted to the elevated T-maze (ETM). Since reported evidence has implicated the 5-HT(1A) receptors of the dorsal periaqueductal gray matter (DPAG) in the panicolytic effect of antidepressants, rats treated with pindolol (5.0 mg/kg, i.p.) and paroxetine (1.5 mg/kg, i.p.) received a previous intra-DPAG injection of the selective 5-HT(1A) antagonist, WAY-100635 (0.4 mu g) and were submitted to the ETM. Pretreatment with WAY-100635 reversed the increase in escape latency, a panicolytic effect, determined by the pindolol-paroxetine combination. These results implicate the 5-HT(1A) receptors of the DPAG in the panicolytic effect of the pindolol-paroxetine combination administered systemically. They also give further preclinical support for the use of this drug combination in the treatment of panic disorder. (C) 2011 Elsevier Ireland Ltd. All rights reserved.