923 resultados para Ratio-Dependant Predator-Prey Model


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Limited evidence exists to suggest that the ability to invade and escape protozoan host cell bactericidal activity extends to members of the Chlamydiaceae, intracellular pathogens of humans and animals and evolutionary descendants of amoeba-resisting Chlamydia-like organisms. PCR and microscopic analyses of Chlamydophila abortus infections of Acanthamoeba castellani revealed uptake of this chlamydial pathogen but, unlike the well-described inhabitant of A. castellani, Parachlamydia acanthamoebae, Cp. abortus did not appear to propagate and is likely digested by its amoebal host. These data raise doubts about the ability of free-living amoebae to serve as hosts and vectors of pathogenic members of the Chlamydiaceae but reveal opportunities, via comparative genomics, to understand virulence mechanisms used by Chlamydia-like organisms to avoid amoebal digestion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Passerines are especially vulnerable to predation at the pre-independence stage. Although the role of nest success in British farmland passerine declines is contentious, improvement in nest success through sympathetic management could play a role in their reversal. Because habitat is known to interact with predation, management options for mitigation will need to consider effects of nest predation. We present results from an observational study of a population of Common Blackbird Turdus merula on a farm which has experienced a range of agri-environment and game-management options, including a period with nest predator control, as a case study to address some of these issues. We used an information theoretic model comparison procedure to look for evidence of interactions between habitat and nest predation, and then asked whether habitat management and nest predator abundances could explain population trends at the site through their effects on nest success. Interactions were detected between measures of predator abundance and habitat variables, and these varied with nest stage - habitat within the vicinity of the nest appeared to be important at the egg stage, and nest-placement characteristics were important at the nestling stage. Although predator control appeared to have a positive influence on Blackbird breeding population size, the non-experimental set-up meant we could not eliminate other potential explanations. Variation in breeding population size did not appear to be influenced by variation in nest success alone. Our study demonstrates that observational data can only go so far in detection of such effects, and we discuss how it might be taken further. Agri-environment and game-management techniques are likely to influence nest predation pressure on farmland passerines, but the patterns, mechanisms and importance to population processes remain not wholly understood.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

1. Determining the functional significance of species diversity in natural enemy assemblages is a key step towards prediction of the likely impact of biodiversity loss on natural pest control processes. While the biological control literature contains examples in which increased natural enemy diversity hinders pest control, other studies have highlighted mechanisms where pest suppression is promoted by increased enemy diversity. 2. This study aimed to test whether increased predator species diversity results in higher rates of predation on two key, but contrasting, insect pest species commonly found in the rice ecosystems of south-east Asia. 3. Glasshouse experiments were undertaken in which four life stages of a planthopper (Nilaparvata lugens) and a moth (Marasmia patnalis) were caged with single or three-species combinations of generalist predators. 4. Generally, predation rates of the three-species assemblages exceeded expectation when attacking M. patnalis, but not when attacking N. lugens. In addition, a positive effect of increased predator species richness on overall predation rate was found with M. patnalis but not with N. lugens. 5. The results are consistent with theoretical predictions that morphological and behavioural differentiation among prey life stages promotes functional complementarity among predator species. This indicates that emergent species diversity effects in natural enemy assemblages are context dependent; they depend not only on the characteristics of the predators species, but on the identity of the species on which they prey.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study, we assessed the influence of prey quality and prey biomass during a standardized 3-week test on adult survival and reproductive output of the predatory mite Hypoaspis aculeifer when fed one of six different diets: springtails (Folsomia candida and Folsomia fimetaria), a storage mite (Caloglyphus cf. michaeli), an oligochaete (Enchytraeus crypticus), a nematode (Turbatrix silusiae), and a 1:1:1 mix of F. candida:F.fimetaria:E. crypticus. Our results revealed that a single prey species may be nutritionally sufficient for a 3-week period, as H. aculeifer performed equally well, or better, on a diet based on a 1:1:1 mix of F. candida:F. fimetaria:E. crypticus. However, when fed C. cf. michaeli, H. aculeifer had a poor reproductive output (< 200 juveniles) and a reduced survival (60-70%). Thus, investigators should validate their choice of prey prior to testing H. aculeifer performance during toxicant exposure. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose and analyze a simple mathematical model for susceptible prey (S)–infected prey (I)–predator (P) interaction, where the susceptible prey population (S) is infected directly from external sources as well as through contact with infected class (I) and the predator completely avoids consuming the infected prey. The model is analyzed to obtain different thresholds of the key parameters under which the system exhibits stability around the biologically feasible equilibria. Through numerical simulations we display the effects of external infection and the infection through contact on the system dynamics in the absence as well as in the presence of the predator. We compare the system dynamics when infection occurs only through contact, with that when it occurs through contact and external sources. Our analysis demonstrates that under a disease-selective predation, stability and oscillations of the system is determined by two key parameters: the external infection rate and the force of infection through contact. Due to the introduction of external infection, the predator and the prey population show limit-cycle oscillations over a range parametric values. We suggest that while predicting the dynamics of such an eco-epidemiological system, the modes of infection and the infection rates might be carefully investigated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The critical behavior of the stochastic susceptible-infected-recovered model on a square lattice is obtained by numerical simulations and finite-size scaling. The order parameter as well as the distribution in the number of recovered individuals is determined as a function of the infection rate for several values of the system size. The analysis around criticality is obtained by exploring the close relationship between the present model and standard percolation theory. The quantity UP, equal to the ratio U between the second moment and the squared first moment of the size distribution multiplied by the order parameter P, is shown to have, for a square system, a universal value 1.0167(1) that is the same for site and bond percolation, confirming further that the SIR model is also in the percolation class.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study a stochastic process describing the onset of spreading dynamics of an epidemic in a population composed of individuals of three classes: susceptible (S), infected (I), and recovered (R). The stochastic process is defined by local rules and involves the following cyclic process: S -> I -> R -> S (SIRS). The open process S -> I -> R (SIR) is studied as a particular case of the SIRS process. The epidemic process is analyzed at different levels of description: by a stochastic lattice gas model and by a birth and death process. By means of Monte Carlo simulations and dynamical mean-field approximations we show that the SIRS stochastic lattice gas model exhibit a line of critical points separating the two phases: an absorbing phase where the lattice is completely full of S individuals and an active phase where S, I and R individuals coexist, which may or may not present population cycles. The critical line, that corresponds to the onset of epidemic spreading, is shown to belong in the directed percolation universality class. By considering the birth and death process we analyze the role of noise in stabilizing the oscillations. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Birnbaum-Saunders regression model is becoming increasingly popular in lifetime analyses and reliability studies. In this model, the signed likelihood ratio statistic provides the basis for testing inference and construction of confidence limits for a single parameter of interest. We focus on the small sample case, where the standard normal distribution gives a poor approximation to the true distribution of the statistic. We derive three adjusted signed likelihood ratio statistics that lead to very accurate inference even for very small samples. Two empirical applications are presented. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study we analyzed the ovipositional behavior of C. albiceps, C. megacephala and L. eximia in response to previous presence of larvae of different species, both predator and prey. The preference for substrates that previously had had no larvae was predominant for all species. However, the experiments showed that C. megacephala and L. eximia avoid laying eggs principally in patches with previous presence of C. albiceps larvae. The implications of these results for the necrophagous Diptera community dynamics are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study we investigated predation rates on third instar larvae of Chrysomya putoria and C. megacephala by third instar larvae of C. albiceps in a two-choice situation. The highest predation rate occurred on C. putoria larvae and this result is compared to previous experiments, in which C. macellaria larvae were present. Our results suggest that, when C. macellaria is absent C. albiceps larvae attack more C. putoria than C. megacephala larvae. Prey choice decisions and its implications for introduced and native blowflies are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

1. A long-standing question in ecology is how natural populations respond to a changing environment. Emergent optimal foraging theory-based models for individual variation go beyond the population level and predict how its individuals would respond to disturbances that produce changes in resource availability. 2. Evaluating variations in resource use patterns at the intrapopulation level in wild populations under changing environmental conditions would allow to further advance in the research on foraging ecology and evolution by gaining a better idea of the underlying mechanisms explaining trophic diversity. 3. In this study, we use a large spatio-temporal scale data set (western continental Europe, 19682006) on the diet of Bonellis Eagle Aquila fasciata breeding pairs to analyse the predator trophic responses at the intrapopulation level to a prey population crash. In particular, we borrow metrics from studies on network structure and intrapopulation variation to understand how an emerging infectious disease [the rabbit haemorrhagic disease (RHD)] that caused the density of the eagles primary prey (rabbit Oryctolagus cuniculus) to dramatically drop across Europe impacted on resource use patterns of this endangered raptor. 4. Following the major RHD outbreak, substantial changes in Bonellis Eagles diet diversity and organisation patterns at the intrapopulation level took place. Dietary variation among breeding pairs was larger after than before the outbreak. Before RHD, there were no clusters of pairs with similar diets, but significant clustering emerged after RHD. Moreover, diets at the pair level presented a nested pattern before RHD, but not after. 5. Here, we reveal how intrapopulation patterns of resource use can quantitatively and qualitatively vary, given drastic changes in resource availability. 6. For the first time, we show that a pathogen of a prey species can indirectly impact the intrapopulation patterns of resource use of an endangered predator.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The complex effects of light, nutrients and temperature lead to a variable carbon to chlorophyll (C:Chl) ratio in phytoplankton cells. Using field data collected in the Equatorial Pacific, we derived a new dynamic model with a non-steady C:Chl ratio as a function of irradiance, nitrate, iron, and temperature. The dynamic model is implemented into a basin-scale ocean circulation-biogeochemistry model and tested in the Equatorial Pacific Ocean. The model reproduces well the general features of phytoplankton dynamics in this region. For instance, the simulated deep chlorophyll maximum (DCM) is much deeper in the western warm pool (similar to 100 m) than in the Eastern Equatorial Pacific (similar to 50 m). The model also shows the ability to reproduce chlorophyll, including not only the zonal, meridional and vertical variations, but also the interannual variability. This modeling study demonstrates that combination of nitrate and iron regulates the spatial and temporal variations in the phytoplankton C:Chl ratio in the Equatorial Pacific. Sensitivity simulations suggest that nitrate is mainly responsible for the high C:Chl ratio in the western warm pool while iron is responsible for the frontal features in the C:Chl ratio between the warm pool and the upwelling region. In addition, iron plays a dominant role in regulating the spatial and temporal variations of the C:Chl ratio in the Central and Eastern Equatorial Pacific. While temperature has a relatively small effect on the C:Chl ratio, light is primarily responsible for the vertical decrease of phytoplankton C:Chl ratio in the euphotic zone.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE Cyclic recruitment and derecruitment of atelectasis can occur during mechanical ventilation, especially in injured lungs. Experimentally, cyclic recruitment and derecruitment can be quantified by respiration-dependent changes in PaO2 (ΔPaO2), reflecting the varying intrapulmonary shunt fraction within the respiratory cycle. This study investigated the effect of inspiration to expiration ratio upon ΔPaO2 and Horowitz index. DESIGN Prospective randomized study. SETTING Laboratory investigation. SUBJECTS Piglets, average weight 30 ± 2 kg. INTERVENTIONS At respiratory rate 6 breaths/min, end-inspiratory pressure (Pendinsp) 40 cm H2O, positive end-expiratory pressure 5 cm H2O, and FIO2 1.0, measurements were performed at randomly set inspiration to expiration ratios during baseline healthy and mild surfactant depletion injury. Lung damage was titrated by repetitive surfactant washout to induce maximal cyclic recruitment and derecruitment as measured by multifrequency phase fluorimetry. Regional ventilation distribution was evaluated by electrical impedance tomography. Step changes in airway pressure from 5 to 40 cm H2O and vice versa were performed after lavage to calculate PO2-based recruitment and derecruitment time constants (TAU). MEASUREMENTS AND MAIN RESULTS In baseline healthy, cyclic recruitment and derecruitment could not be provoked, whereas in model acute respiratory distress syndrome, the highest ΔPaO2 were routinely detected at an inspiration to expiration ratio of 1:4 (range, 52-277 torr [6.9-36.9 kPa]). Shorter expiration time reduced cyclic recruitment and derecruitment significantly (158 ± 85 torr [21.1 ± 11.3 kPa] [inspiration to expiration ratio, 1:4]; 25 ± 12 torr [3.3 ± 1.6 kPa] [inspiration to expiration ratio, 4:1]; p < 0.0001), whereas the PaO2/FIO2 ratio increased (267 ± 50 [inspiration to expiration ratio, 1:4]; 424 ± 53 [inspiration to expiration ratio, 4:1]; p < 0.0001). Correspondingly, regional ventilation redistributed toward dependent lung regions (p < 0.0001). Recruitment was much faster (TAU: fast 1.6 s [78%]; slow 9.2 s) than derecruitment (TAU: fast 3.1 s [87%]; slow 17.7 s) (p = 0.0078). CONCLUSIONS Inverse ratio ventilation minimizes cyclic recruitment and derecruitment of atelectasis in an experimental model of surfactant-depleted pigs. Time constants for recruitment and derecruitment, and regional ventilation distribution, reflect these findings and highlight the time dependency of cyclic recruitment and derecruitment.