983 resultados para Radiotherapy planning
Resumo:
Patients undergoing radiation therapy for cancer face a series of challenges that require support from a multidisciplinary team which includes radiation oncology nurses. However, the specific contribution of nursing, and the models of care that best support the delivery of nursing interventions in the radiotherapy setting, is not well described. In this case study, the Interaction Model of Client Health Behaviour and the associated principles of person-centred care were incorporated into a new model of care that was implemented in one radiation oncology setting in Brisbane, Australia. The new model of care was operationalised through a Primary Nursing/Collaborative Practice framework. To evaluate the impact of the new model for patients and health professionals, multiple sources of data were collected from patients and clinical staff prior to, during, and 18 months following introduction of the practice redesign. One cohort of patients and clinical staff completed surveys incorporating measures of key outcomes immediately prior to implementation of the model, while a second cohort of patients and clinical staff completed these same surveys 18 months following introduction of the model. In-depth interviews were also conducted with nursing, medical and allied health staff throughout the implementation phase to obtain a more comprehensive account of the processes and outcomes associated with implementing such a model. From the patients’ perspectives, this study demonstrated that, although adverse effects of radiotherapy continue to affect patient well-being, patients continue to be satisfied with nursing care in this specialty, and that they generally reported high levels of functioning despite undergoing a curative course of radiotherapy. From the health professionals’ perspective, there was evidence of attitudinal change by nursing staff within the radiotherapy department which reflected a greater understanding and appreciation of a more person-centred approach to care. Importantly, this case study has also confirmed that a range of factors need to be considered when redesigning nursing practice in the radiotherapy setting, as the challenges associated with changing traditional practices, ensuring multidisciplinary approaches to care, and resourcing a new model were experienced. The findings from this study suggest that the move from a relatively functional approach to a person-centred approach in the radiotherapy setting has contributed to some improvements in the provision of individualised and coordinated patient care. However, this study has also highlighted that primary nursing may be limited in its approach as a framework for patient care unless it is supported by a whole team approach, an appropriate supportive governance model, and sufficient resourcing. Introducing such a model thus requires effective education, preparation and ongoing support for the whole team. The challenges of providing care in the context of complex interdisciplinary relationships have been highlighted by this study. Aspects of this study may assist in planning further nursing interventions for patients undergoing radiotherapy for cancer, and continue to enhance the contribution of the radiation oncology nurse to improved patient outcomes.
Resumo:
The iPlan treatment planning sys-tem uses a pencil beam algorithm, with density cor-rections, to predict the doses delivered by very small (stereotactic) radiotherapy fields. This study tests the accuracy of dose predictions made by iPlan, for small-field treatments delivered to a planar solid wa-ter phantom and to heterogeneous human tissue using the BrainLAB m3 micro-multileaf collimator.
Resumo:
Predicting safety on roadways is standard practice for road safety professionals and has a corresponding extensive literature. The majority of safety prediction models are estimated using roadway segment and intersection (microscale) data, while more recently efforts have been undertaken to predict safety at the planning level (macroscale). Safety prediction models typically include roadway, operations, and exposure variables—factors known to affect safety in fundamental ways. Environmental variables, in particular variables attempting to capture the effect of rain on road safety, are difficult to obtain and have rarely been considered. In the few cases weather variables have been included, historical averages rather than actual weather conditions during which crashes are observed have been used. Without the inclusion of weather related variables researchers have had difficulty explaining regional differences in the safety performance of various entities (e.g. intersections, road segments, highways, etc.) As part of the NCHRP 8-44 research effort, researchers developed PLANSAFE, or planning level safety prediction models. These models make use of socio-economic, demographic, and roadway variables for predicting planning level safety. Accounting for regional differences - similar to the experience for microscale safety models - has been problematic during the development of planning level safety prediction models. More specifically, without weather related variables there is an insufficient set of variables for explaining safety differences across regions and states. Furthermore, omitted variable bias resulting from excluding these important variables may adversely impact the coefficients of included variables, thus contributing to difficulty in model interpretation and accuracy. This paper summarizes the results of an effort to include weather related variables, particularly various measures of rainfall, into accident frequency prediction and the prediction of the frequency of fatal and/or injury degree of severity crash models. The purpose of the study was to determine whether these variables do in fact improve overall goodness of fit of the models, whether these variables may explain some or all of observed regional differences, and identifying the estimated effects of rainfall on safety. The models are based on Traffic Analysis Zone level datasets from Michigan, and Pima and Maricopa Counties in Arizona. Numerous rain-related variables were found to be statistically significant, selected rain related variables improved the overall goodness of fit, and inclusion of these variables reduced the portion of the model explained by the constant in the base models without weather variables. Rain tends to diminish safety, as expected, in fairly complex ways, depending on rain frequency and intensity.
Resumo:
At least two important transportation planning activities rely on planning-level crash prediction models. One is motivated by the Transportation Equity Act for the 21st Century, which requires departments of transportation and metropolitan planning organizations to consider safety explicitly in the transportation planning process. The second could arise from a need for state agencies to establish incentive programs to reduce injuries and save lives. Both applications require a forecast of safety for a future period. Planning-level crash prediction models for the Tucson, Arizona, metropolitan region are presented to demonstrate the feasibility of such models. Data were separated into fatal, injury, and property-damage crashes. To accommodate overdispersion in the data, negative binomial regression models were applied. To accommodate the simultaneity of fatality and injury crash outcomes, simultaneous estimation of the models was conducted. All models produce crash forecasts at the traffic analysis zone level. Statistically significant (p-values < 0.05) and theoretically meaningful variables for the fatal crash model included population density, persons 17 years old or younger as a percentage of the total population, and intersection density. Significant variables for the injury and property-damage crash models were population density, number of employees, intersections density, percentage of miles of principal arterial, percentage of miles of minor arterials, and percentage of miles of urban collectors. Among several conclusions it is suggested that planning-level safety models are feasible and may play a role in future planning activities. However, caution must be exercised with such models.
Resumo:
The Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991 mandated the consideration of safety in the regional transportation planning process. As part of National Cooperative Highway Research Program Project 8-44, "Incorporating Safety into the Transportation Planning Process," we conducted a telephone survey to assess safety-related activities and expertise at Governors Highway Safety Associations (GHSAs), and GHSA relationships with metropolitan planning organizations (MPOs) and state departments of transportation (DOTs). The survey results were combined with statewide crash data to enable exploratory modeling of the relationship between GHSA policies and programs and statewide safety. The modeling objective was to illuminate current hurdles to ISTEA implementation, so that appropriate institutional, analytical, and personnel improvements can be made. The study revealed that coordination of transportation safety across DOTs, MPOs, GHSAs, and departments of public safety is generally beneficial to the implementation of safety. In addition, better coordination is characterized by more positive and constructive attitudes toward incorporating safety into planning.
Resumo:
Most infrastructure project developments are complex in nature, particularly in the planning phase. During this stage, many vague alternatives are tabled - from the strategic to operational level. Human judgement and decision making are characterised by biases, errors and the use of heuristics. These factors are intangible and hard to measure because they are subjective and qualitative in nature. The problem with human judgement becomes more complex when a group of people are involved. The variety of different stakeholders may cause conflict due to differences in personal judgements. Hence, the available alternatives increase the complexities of the decision making process. Therefore, it is desirable to find ways of enhancing the efficiency of decision making to avoid misunderstandings and conflict within organisations. As a result, numerous attempts have been made to solve problems in this area by leveraging technologies such as decision support systems. However, most construction project management decision support systems only concentrate on model development and neglect fundamentals of computing such as requirement engineering, data communication, data management and human centred computing. Thus, decision support systems are complicated and are less efficient in supporting the decision making of project team members. It is desirable for decision support systems to be simpler, to provide a better collaborative platform, to allow for efficient data manipulation, and to adequately reflect user needs. In this chapter, a framework for a more desirable decision support system environment is presented. Some key issues related to decision support system implementation are also described.
Resumo:
The field of collaborative health planning faces significant challenges due to the lack of effective information, systems and the absence of a framework to make informed decisions. These challenges have been magnified by the rise of the healthy cities movement, consequently, there have been more frequent calls for localised, collaborative and evidence-driven decision-making. Some studies in the past have reported that the use of decision support systems (DSS) for planning healthy cities may lead to: increase collaboration between stakeholders and the general public, improve the accuracy and quality of the decision-making processes and improve the availability of data and information for health decision-makers. These links have not yet been fully tested and only a handful of studies have evaluated the impact of DSS on stakeholders, policy-makers and health planners. This study suggests a framework for developing healthy cities and introduces an online Geographic Information Systems (GIS)-based DSS for improving the collaborative health planning. It also presents preliminary findings of an ongoing case study conducted in the Logan-Beaudesert region of Queensland, Australia. These findings highlight the perceptions of decision-making prior to the implementation of the DSS intervention. Further, the findings help us to understand the potential role of the DSS to improve collaborative health planning practice.