917 resultados para Radio-frequency energy harvesting
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The aim of this work is the application of the Interior Point and Branch and Bound methods in multiobjective optimization models related to sugarcane harvest residual biomass. These methods showed their viability to help on choosing the sugarcane planting varieties, searching to optimize cost and energy balance of harvest residual biomass, which have conflitant objectives. These methods provide satisfactory results, with fair computing performance and reliable and consistent solutions to the analyzed models. © 2011 IEEE.
Resumo:
In this paper, we deal with the research of a proposed mathematical model of energy harvesting, including nonlinearities in the piezoelectric coupling and a non-ideal force of excitation. We showed using numerical simulations to analysis of the dynamic responses that, the power harvested was influenced by the nonlinear vibrations of the structure, as well as by the influence of the non-linearities in the piezoelectric coupling. We concluded through of the numerical results that the limited energy source was interacting with the system. Thus, the increasing of the voltage in DC motor led the system produce a good power response, especially in high-energy orbits in the resonance region, but the Sommerfeld effect occurs in the system and a chaotic behavior was found in the post-resonance region. So the power harvested along the time decreases because occurs loses of energy due the interaction between energy source and structure. Keeping the energy harvested constant over time is essential to make possible the use of energy harvesting systems in real applications. To achieve this objective, we applied a control technique in order to stabilize the chaotic system in a periodic stable orbit. We announced that the results were satisfactory and the control maintained the system in a stable condition. © 2012 Foundation for Scientific Research and Technological Innovation.
Resumo:
Aluminum acetylacetonate has been reported as a precursor for the deposition of alumina films using different approaches. In this work, alumina-containing films were prepared by plasma sputtering this compound, spread directly on the powered lowermost electrode of a reactor, while grounding the substrates mounted on the topmost electrode. Radiofrequency power (13.56 MHz) was used to excite the plasma from argon atmosphere at a working pressure of 11 Pa. The effect of the plasma excitation power on the properties of the resulting films was studied. Film thickness and hardness were measured by profilometry and nanoindentation, respectively. The molecular structure and chemical composition of the layers were analyzed by Fourier transform infrared spectroscopy and energy dispersive spectroscopy. Surface micrographs, obtained by scanning electron microscopy, allowed the determination of the sample morphology. Grazing incidence X-ray diffraction was employed to determine the structure of the films. Amorphous organic layers were deposited with thicknesses of up to 7 μm and hardness of around 1.0 GPa. The films were composed by aluminum, carbon, oxygen and hydrogen, their proportions being strongly dependent on the power used to excite the plasma. A uniform surface was obtained for low-power depositions, but particulates and cracks appeared in the high-power prepared materials. The presence of different proportions of aluminum oxide in the coatings is ascribed to the different activations promoted in the metalorganic molecule once in the plasma phase. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.
Resumo:
Diverse amorphous hydrogenated carbon-based films (a-C:H, a-C:H:F, a-C:H:N, a-C:H:Cl and a-C:H:Si:O) were obtained by radiofrequency plasma enhanced chemical vapor deposition (PECVD) and plasma immersion ion implantation and deposition (PIIID). The same precursors were used in the production of each pair of each type of film, such as a-C:H, using both PECVD and PIIID. Optical properties, namely the refractive index, n, absorption coefficient, α, and optical gap, ETauc, of these films were obtained via transmission spectra in the ultraviolet-visible near-infrared range (wavelengths from 300 to 3300 nm). Film hardness, elastic modulus and stiffness were obtained as a function of depth using nano-indentation. Surface energy values were calculated from liquid drop contact angle data. Film roughness and morphology were assessed using atomic force microscopy (AFM). The PIIID films were usually thinner and possessed higher refractive indices than the PECVD films. Determined refractive indices are consistent with literature values for similar types of films. Values of ETauc were increased in the PIIID films compared to the PECVD films. An exception was the a-C:H:Si:O films, for which that obtained by PIIID was thicker and exhibited a decreased ETauc. The mechanical properties - hardness, elastic modulus and stiffness - of films produced by PECVD and PIIID generally present small differences. An interesting effect is the increase in the hardness of a-C:H:Cl films from 1.0 to 3.0 GPa when ion implantation is employed. Surface energy correlates well with surface roughness. The implanted films are usually smoother than those obtained by PECVD. ©2013 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Esta dissertação tem como objetivo principal propor um nodo (ou nó) sensor sem fio para ser utilizado em redes de sensores sem fio, em sistemas de aquisição de dados de extensômetros. O sistema de aquisição para os extensômetros é baseado na ponte de Wheatstone e de modo a permitir várias configurações de extensômetros. O processamento e a comunicação sem fio é realizada pelo ATmega128RFA1, composto por um microcontrolador e um transceiver Rádio-Frequência com o padrão Zigbee. O nodo foi projetado para garantir confiabilidade na aquisição de dados e ser totalmente controlado remotamente. Entre os parâmetros controláveis estão: o ganho do sinal e a taxa de amostragem. Além disso, o nodo possui recursos para efetuar o equilíbrio da ponte de Wheatstone automaticamente. A escolha de seus componentes, baseou-se em critérios relacionados ao consumo de energia do mesmo e ao custo. Foi concebida uma placa de circuito impresso (PCI) para o nodo, e sobre ela foram realizadas estimativas sobre o consumo de energia e valor agregado do protótipo, com o objetivo de analisar a sua viabilidade. Além do projeto do nodo sensor, o trabalho apresenta a proposta de integração do mesmo em uma rede de sensores sem fio (RSSF), incluindo a sugestão do hardware complementar e desenvolvimentos dos softwares. Para os testes do nodo sensor, foi construido experimentalmente um transdutor de força.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
The purpose of this work is the deposition of films in order to increase the corrosion resistance of AISI 304 steel, which is a material used to construct the reactors for bioethanol production. This deposition inhibits the permeation of corrosive species to the film-metal interface. Thin films were prepared by radio-frequency plasma enhanced chemical vapor deposition (RF-PECVD) method using plasmas of hexamethyldisiloxane/argon/oxygen mixtures excited by signals of different powers. The plasma was generated by the application of RF power of 13.56 MHz to the sample holder while keeping grounded the topmost electrode and the chamber walls. The effect of the RF power on the properties of the samples was investigated by perfilometry, X-ray photoelectron spectroscopy (XPS), contact angle, and electrochemical impedance spectroscopy (EIS). The results of the corrosion resistance tests of the AISI 304 steel were interpreted in terms of the energy delivered to the growing layer by plasma excitation power.
Resumo:
This paper describes a CMOS implementation of a linear voltage regulator (LVR) used to power up implanted physiological signal systems, as it is the case of a wireless blood pressure biosensor. The topology is based on a classical structure of a linear low-dropout regulator. The circuit is powered up from an RF link, thus characterizing a passive radio frequency identification (RFID) tag. The LVR was designed to meet important features such as low power consumption and small silicon area, without the need for any external discrete components. The low power operation represents an essential condition to avoid a high-energy RF link, thus minimizing the transmitted power and therefore minimizing the thermal effects on the patient's tissues. The project was implemented in a 0.35-mu m CMOS process, and the prototypes were tested to validate the overall performance. The LVR output is regulated at 1 V and supplies a maximum load current of 0.5 mA at 37 degrees C. The load regulation is 13 mV/mA, and the line regulation is 39 mV/V. The LVR total power consumption is 1.2 mW.
Resumo:
The g-factor is a constant which connects the magnetic moment $vec{mu}$ of a charged particle, of charge q and mass m, with its angular momentum $vec{J}$. Thus, the magnetic moment can be writen $ vec{mu}_J=g_Jfrac{q}{2m}vec{J}$. The g-factor for a free particle of spin s=1/2 should take the value g=2. But due to quantum electro-dynamical effects it deviates from this value by a small amount, the so called g-factor anomaly $a_e$, which is of the order of $10^{-3}$ for the free electron. This deviation is even bigger if the electron is exposed to high electric fields. Therefore highly charged ions, where electric field strength gets values on the order of $10^{13}-10^{16}$V/cm at the position of the bound electron, are an interesting field of investigations to test QED-calculations. In previous experiments [H"aff00,Ver04] using a single hydrogen-like ion confined in a Penning trap an accuracy of few parts in $10^{-9}$ was obtained. In the present work a new method for precise measurement of magnetic the electronic g-factor of hydrogen-like ions is discussed. Due to the unavoidable magnetic field inhomogeneity in a Penning trap, a very important contribution to the systematic uncertainty in the previous measurements arose from the elevated energy of the ion required for the measurement of its motional frequencies. Then it was necessary to extrapolate the result to vanishing energies. In the new method the energy in the cyclotron degree of freedom is reduced to the minimum attainable energy. This method consist in measuring the reduced cyclotron frequency $nu_{+}$ indirectly by coupling the axial to the reduced cyclotron motion by irradiation of the radio frequency $nu_{coup}=nu_{+}-nu_{ax}+delta$ where $delta$ is, in principle, an unknown detuning that can be obtained from the knowledge of the coupling process. Then the only unknown parameter is the desired value of $nu_+$. As a test, a measurement with, for simplicity, artificially increased axial energy was performed yielding the result $g_{exp}=2.000~047~020~8(24)(44)$. This is in perfect agreement with both the theoretical result $g_{theo}=2.000~047~020~2(6)$ and the previous experimental result $g_{exp1}=2.000~047~025~4(15)(44).$ In the experimental results the second error-bar is due to the uncertainty in the accepted value for the electron's mass. Thus, with the new method a higher accuracy in the g-factor could lead by comparison to the theoretical value to an improved value of the electron's mass. [H"af00] H. H"affner et al., Phys. Rev. Lett. 85 (2000) 5308 [Ver04] J. Verd'u et al., Phys. Rev. Lett. 92 (2004) 093002-1
Resumo:
The radio communication system is one of the most critical system of the overall satellite platform: it often represents the only way of communication, between a spacecraft and the Ground Segment or among a constellation of satellites. This thesis focuses on specific innovative architectures for on-board and on-ground radio systems. In particular, this work is an integral part of a space program started in 2004 at the University of Bologna, Forlì campus, which led to the completion of the microsatellite ALMASat-1, successfully launched on-board the VEGA maiden flight. The success of this program led to the development of a second microsatellite, named ALMASat-EO, a three-axis stabilized microsatellite able to capture images of the Earth surface. Therefore, the first objective of this study was focused on the investigation of an innovative, efficient and low cost architecture for on-board radio communication systems. The TT&C system and the high data rate transmitter for images downlink design and realization are thoroughly described in this work, together with the development of the embedded hardware and the adopted antenna systems. Moreover, considering the increasing interest in the development of constellations of microsatellite, in particular those flying in close formations, a careful analysis has been carried out for the development of innovative communication protocols for inter-satellite links. Furthermore, in order to investigate the system aspects of space communications, a study has been carried out at ESOC having as objective the design, implementation and test of two experimental devices for the enhancement of the ESA GS. Thus, a significant portion of this thesis is dedicated to the description of the results of a method for improving the phase stability of GS radio frequency equipments by means of real-time phase compensation and a new way to perform two antennas arraying tracking using already existing ESA tracking stations facilities.
Resumo:
Graphene, that is a monolayer of carbon atoms arranged in a honeycomb lattice, has been isolated only recently from graphite. This material shows very attractive physical properties, like superior carrier mobility, current carrying capability and thermal conductivity. In consideration of that, graphene has been the object of large investigation as a promising candidate to be used in nanometer-scale devices for electronic applications. In this work, graphene nanoribbons (GNRs), that are narrow strips of graphene, for which a band-gap is induced by the quantum confinement of carriers in the transverse direction, have been studied. As experimental GNR-FETs are still far from being ideal, mainly due to the large width and edge roughness, an accurate description of the physical phenomena occurring in these devices is required to have valuable predictions about the performance of these novel structures. A code has been developed to this purpose and used to investigate the performance of 1 to 15-nm wide GNR-FETs. Due to the importance of an accurate description of the quantum effects in the operation of graphene devices, a full-quantum transport model has been adopted: the electron dynamics has been described by a tight-binding (TB) Hamiltonian model and transport has been solved within the formalism of the non-equilibrium Green's functions (NEGF). Both ballistic and dissipative transport are considered. The inclusion of the electron-phonon interaction has been taken into account in the self-consistent Born approximation. In consideration of their different energy band-gap, narrow GNRs are expected to be suitable for logic applications, while wider ones could be promising candidates as channel material for radio-frequency applications.