998 resultados para Radio direction finders


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blazars are active galaxies with a jet closely oriented to our line of sight. They are powerful, variable emitters from radio to gamma-ray wavelengths. Although the general picture of synchrotron emission at low energies and inverse Compton at high energies is well established, important aspects of blazars are not well understood. In particular, the location of the gamma-ray emission region is not clearly established, with some theories favoring a location close to the central engine, while others place it at parsec scales in the radio jet.

We developed a program to locate the gamma-ray emission site in blazars, through the study of correlated variations between their gamma-ray and radio-wave emission. Correlated variations are expected when there is a relation between emission processes at both bands, while delays tell us about the relative location of their energy generation zones. Monitoring at 15 GHz using the Owens Valley Radio Observatory 40 meter telescope started in mid-2007. The program monitors 1593 blazars twice per week, including all blazars detected by the Fermi Gamma-ray Space Telescope (Fermi) north of -20 degrees declination. This program complements the continuous monitoring of gamma-rays by Fermi.

Three year long gamma-ray light curves for bright Fermi blazars are cross-correlated with four years of radio monitoring. The significance of cross-correlation peaks is investigated using simulations that account for the uneven sampling and noise properties of the light curves, which are modeled as red-noise processes with a simple power-law power spectral density. We found that out of 86 sources with high quality data, only three show significant correlations (AO 0235+164, B2 2308+34 and PKS 1502+106). Additionally, we find a significant correlation for Mrk 421 when including the strong gamma-ray/radio flare of late 2012. In all four cases radio variations lag gamma-ray variations, suggesting that the gamma-ray emission originates upstream of the radio emission. For PKS 1502+106 we locate the gamma-ray emission site parsecs away from the central engine, thus disfavoring the model of Blandford and Levinson (1995), while other cases are inconclusive. These findings show that continuous monitoring over long time periods is required to understand the cross-correlation between gamma-ray and radio-wave variability in most blazars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cosmic birefringence (CB)---a rotation of photon-polarization plane in vacuum---is a generic signature of new scalar fields that could provide dark energy. Previously, WMAP observations excluded a uniform CB-rotation angle larger than a degree.

In this thesis, we develop a minimum-variance--estimator formalism for reconstructing direction-dependent rotation from full-sky CMB maps, and forecast more than an order-of-magnitude improvement in sensitivity with incoming Planck data and future satellite missions. Next, we perform the first analysis of WMAP-7 data to look for rotation-angle anisotropies and report null detection of the rotation-angle power-spectrum multipoles below L=512, constraining quadrupole amplitude of a scale-invariant power to less than one degree. We further explore the use of a cross-correlation between CMB temperature and the rotation for detecting the CB signal, for different quintessence models. We find that it may improve sensitivity in case of marginal detection, and provide an empirical handle for distinguishing details of new physics indicated by CB.

We then consider other parity-violating physics beyond standard models---in particular, a chiral inflationary-gravitational-wave background. We show that WMAP has no constraining power, while a cosmic-variance--limited experiment would be capable of detecting only a large parity violation. In case of a strong detection of EB/TB correlations, CB can be readily distinguished from chiral gravity waves.

We next adopt our CB analysis to investigate patchy screening of the CMB, driven by inhomogeneities during the Epoch of Reionization (EoR). We constrain a toy model of reionization with WMAP-7 data, and show that data from Planck should start approaching interesting portions of the EoR parameter space and can be used to exclude reionization tomographies with large ionized bubbles.

In light of the upcoming data from low-frequency radio observations of the redshifted 21-cm line from the EoR, we examine probability-distribution functions (PDFs) and difference PDFs of the simulated 21-cm brightness temperature, and discuss the information that can be recovered using these statistics. We find that PDFs are insensitive to details of small-scale physics, but highly sensitive to the properties of the ionizing sources and the size of ionized bubbles.

Finally, we discuss prospects for related future investigations.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surface resistance and the critical magnetic field of lead electroplated on copper were studied at 205 MHz in a half-wave coaxial resonator. The observed surface resistance at a low field level below 4.2°K could be well described by the BCS surface resistance with the addition of a temperature independent residual resistance. The available experimental data suggest that the major fraction of the residual resistance in the present experiment was due to the presence of an oxide layer on the surface. At higher magnetic field levels the surface resistance was found to be enhanced due to surface imperfections.

The attainable rf critical magnetic field between 2.2°K and T_c of lead was found to be limited not by the thermodynamic critical field but rather by the superheating field predicted by the one-dimensional Ginzburg-Landau theory. The observed rf critical field was very close to the expected superheating field, particularly in the higher reduced temperature range, but showed somewhat stronger temperature dependence than the expected superheating field in the lower reduced temperature range.

The rf critical magnetic field was also studied at 90 MHz for pure tin and indium, and for a series of SnIn and InBi alloys spanning both type I and type II superconductivity. The samples were spherical with typical diameters of 1-2 mm and a helical resonator was used to generate the rf magnetic field in the measurement. The results of pure samples of tin and indium showed that a vortex-like nucleation of the normal phase was responsible for the superconducting-to-normal phase transition in the rf field at temperatures up to about 0.98-0.99 T_c' where the ideal superheating limit was being reached. The results of the alloy samples showed that the attainable rf critical fields near T_c were well described by the superheating field predicted by the one-dimensional GL theory in both the type I and type II regimes. The measurement was also made at 300 MHz resulting in no significant change in the rf critical field. Thus it was inferred that the nucleation time of the normal phase, once the critical field was reached, was small compared with the rf period in this frequency range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the dressed-atom approach, we discuss a two-dimensional (2D) radio-frequency trap for neutral atoms, in which the trap potential derives from the magnetic-dipole transition among the hyperfine Zeeman sublevels. By adjusting the detuning of the radiation from resonance, the trapping states will be changed predominantly from the bare states Of m(FgF) > 0 to other states of m(FgF) < 0, where m(F) and g(F) are the quantum numbers of Zeeman sublevels and the Lande factor, respectively. This character contrasts finely with that, of a static magnetic, trap that can only trap or guide the states of m(FgF) > 0. In comparison to the optical field, the radio-frequency trap eliminates the spontaneous emission heating of the atoms. Unlike other oscillating traps reported in the e literature, the configuration of the radio-frequency trap is suitable for realization of a miniature magnetic guide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a surface planar ion chip which forms a linear radio frequency Paul ion trap. The electrodes reside in the two planes of a chip, and the trap axis is located above the chip surface. Its electric field and potential distribution are similar to the standard linear radio frequency Paul ion trap. This ion trap geometry may be greatly meaningful for quantum information processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the behaviour of atoms in a field with both static magnetic field and radio frequency (rf) magnetic field. We calculate the adiabatic potential of atoms numerically beyond the usually rotating wave approximation, and it is pointed that there is a great difference between using these two methods. We find the preconditions when RWA is valid. In the extreme of static field almost parallel to rf field, we reach an analytic formula. Finally, we apply this method to Rb-87 and propose a guide based on an rf field on atom chip.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While synoptic surveys in the optical and at high energies have revealed a rich discovery phase space of slow transients, a similar yield is still awaited in the radio. Majority of the past blind surveys, carried out with radio interferometers, have suffered from a low yield of slow transients, ambiguous transient classifications, and contamination by false positives. The newly-refurbished Karl G. Jansky Array (Jansky VLA) offers wider bandwidths for accurate RFI excision as well as substantially-improved sensitivity and survey speed compared with the old VLA. The Jansky VLA thus eliminates the pitfalls of interferometric transient search by facilitating sensitive, wide-field, and near-real-time radio surveys and enabling a systematic exploration of the dynamic radio sky. This thesis aims at carrying out blind Jansky VLA surveys for characterizing the radio variable and transient sources at frequencies of a few GHz and on timescales between days and years. Through joint radio and optical surveys, the thesis addresses outstanding questions pertaining to the rates of slow radio transients (e.g. radio supernovae, tidal disruption events, binary neutron star mergers, stellar flares, etc.), the false-positive foreground relevant for the radio and optical counterpart searches of gravitational wave sources, and the beaming factor of gamma-ray bursts. The need for rapid processing of the Jansky VLA data and near-real-time radio transient search has enabled the development of state-of-the-art software infrastructure. This thesis has successfully demonstrated the Jansky VLA as a powerful transient search instrument, and it serves as a pathfinder for the transient surveys planned for the SKA-mid pathfinder facilities, viz. ASKAP, MeerKAT, and WSRT/Apertif.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A substantial amount of important scientific information is contained within astronomical data at the submillimeter and far-infrared (FIR) wavelengths, including information regarding dusty galaxies, galaxy clusters, and star-forming regions; however, these wavelengths are among the least-explored fields in astronomy because of the technological difficulties involved in such research. Over the past 20 years, considerable efforts have been devoted to developing submillimeter- and millimeter-wavelength astronomical instruments and telescopes.

The number of detectors is an important property of such instruments and is the subject of the current study. Future telescopes will require as many as hundreds of thousands of detectors to meet the necessary requirements in terms of the field of view, scan speed, and resolution. A large pixel count is one benefit of the development of multiplexable detectors that use kinetic inductance detector (KID) technology.

This dissertation presents the development of a KID-based instrument including a portion of the millimeter-wave bandpass filters and all aspects of the readout electronics, which together enabled one of the largest detector counts achieved to date in submillimeter-/millimeter-wavelength imaging arrays: a total of 2304 detectors. The work presented in this dissertation has been implemented in the MUltiwavelength Submillimeter Inductance Camera (MUSIC), a new instrument for the Caltech Submillimeter Observatory (CSO).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A menudo, el deslumbramiento de los nuevos medios impide el reconocimiento debido a otras alternativas de comunicación social que, de manera persistente y discreta, han llegado a confundirse con nuestra propia vida. Es el caso de este medio invisible, que bien se merecía un congreso dedicado a la mejor radio y a uno de sus mayores inspiradores, Bertolt Brecht, quien ochenta años atrás imaginó una radio interactiva cuando no existía la tecnología necesaria para hacer realidad su sueño. Hoy como ayer, las voces comunicantes de la radio cuentan mil y una historias que los oyentes siguen como si les fuera la vida en ello. Quizá la radio no esté a la cabeza de las industrias creativas, pero su magia sigue desatando la imaginación y la creatividad de las audiencias. Es por eso, y por su cercanía, que da tanta confianza y es tan querida. Nada más lejos de nuestra intención que la autocomplacencia, un virus tanto o más peligroso que el ruido y la cacofonía radiofónica, que de todo hay en el dial. Los participantes en este encuentro nos hemos conjurado a favor de una radio abierta; hecha con cabeza y corazón, como la vida misma; y más acogedora con los jóvenes creadores, que no lo saben todo de la radio, pero, por eso mismo, están mejor preparados para llevar el ritmo que bailan las neuronas de las nuevas audiencias. Una radio que da la palabra a la gente, sabe escuchar, y no se agota en el ejercicio inútil de escucharse a sí misma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most challenging problems in mobile broadband networks is how to assign the available radio resources among the different mobile users. Traditionally, research proposals are either speci c to some type of traffic or deal with computationally intensive algorithms aimed at optimizing the delivery of general purpose traffic. Consequently, commercial networks do not incorporate these mechanisms due to the limited hardware resources at the mobile edge. Emerging 5G architectures introduce cloud computing principles to add flexible computational resources to Radio Access Networks. This paper makes use of the Mobile Edge Computing concepts to introduce a new element, denoted as Mobile Edge Scheduler, aimed at minimizing the mean delay of general traffic flows in the LTE downlink. This element runs close to the eNodeB element and implements a novel flow-aware and channel-aware scheduling policy in order to accommodate the transmissions to the available channel quality of end users.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este documento se recoge toda la documentación asociada al desarrollo de la aplicación para dispositivos móviles Firefox OS, FM Radio RDS. La experiencia ha sido muy satisfactoria, a pesar de las frustraciones pasadas. Se han conseguido cumplir todos los objetivos establecidos inicialmente, obteniendo como resultado una aplicación muy cercana a la ideada. Se puede considerar una herramienta útil y novedosa para la reproducción de la radio FM en función de la posición en los dispositivos con el sistema operativo móvil Firefox OS. Se tiene previsto añadir futuras mejoras, como darle un enfoque más social. Personalmente, se han logrado alcanzar habilidades en el desarrollo de aplicaciones web que me permitirán realizar otros proyectos futuros. A pesar de no haber cumplido con los plazos establecidos en la planificación principal, la sensación personal es positiva al haber conseguido realizar un trabajo de tal magnitud por cuenta propia.