955 resultados para ROS and DNA damage
Resumo:
The protozoan parasite Leishmania presents a dynamic and plastic genome in which gene amplification and chromosome translocations are common phenomena. Such plasticity hints at the necessity of dependable genome maintenance pathways. Eukaryotic cells have evolved checkpoint control systems that recognize altered DNA structures and halt cell cycle progression allowing DNA repair to take place. In these cells, the PCNA-related heterotrimeric complex formed by the proteins Hus1, Rad9, and Rad1 is known to participate in the early steps of replicative stress sensing and signaling. Here we show that the Hus1 homolog of Leishmania major is a nuclear protein that improves the cell capability to cope with replicative stress. Overexpression of LmHus1 confers resistance to the genotoxic drugs hydroxyurea (HU) and methyl methanesulfonate (MMS) and resistance to HU correlates to reduced net DNA damage upon LmHus1 expression. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Mutations in the ATM gene lead to the genetic disorder ataxia-telangiectasia. ATM encodes a protein kinase that is mainly distributed in the nucleus of proliferating cells. Recent studies reveal that ATM regulates multiple cell cycle checkpoints by phosphorylating different targets at different stages of the cell cycle. ATM also functions in the regulation of DNA repair and apoptosis, suggesting that it is a central regulator of responses to DNA double-strand breaks.
Resumo:
The checkpoint kinase Chk2 has a key role in delaying cell cycle progression in response to DNA damage. Upon activation by low-dose ionizing radiation (IR), which occurs in an ataxia telangiectasia mutated (ATM)dependent manner, Chk2 can phosphorylate the mitosis-inducing phosphatase Cdc25C on an inhibitory site, blocking entry into mitosis, and p53 on a regulatory site, causing G, arrest. Here we show that the ATM-dependent activation of Chk2 by gamma- radiation requires Nbs1, the gene product involved in the Nijmegen breakage syndrome (NBS), a disorder that shares with AT a variety of phenotypic defects including chromosome fragility, radiosensitivity, and radioresistant DNA synthesis. Thus, whereas in normal cells Chk2 undergoes a time-dependent increased phosphorylation and induction of catalytic activity against Cdc25C, in NBS cells null for Nbs1 protein, Chk2 phosphorylation and activation are both defective. Importantly, these defects in NBS cells can be complemented by reintroduction of wild-type Nbs1, but neither by a carboxy-terminal deletion mutant of Nbs1 at amino acid 590, unable to form a complex with and to transport Mre11 and Rad50 in the nucleus, nor by an Nbs1 mutated at Ser343 (S343A), the ATM phosphorylation site. Chk2 nuclear expression is unaffected in NBS cells, hence excluding a mislocalization as the cause of failed Chk2 activation in Nbs1-null cells, interestingly, the impaired Chk2 function in NBS cells correlates with the inability, unlike normal cells, to stop entry into mitosis immediately after irradiation, a checkpoint abnormality that can be corrected by introduction of the wild-type but not the S343A mutant form of Nbs1, Altogether, these findings underscore the crucial role of a functional Nbs1 complex in Chk2 activation and suggest that checkpoint defects in NBS cells may result from the inability to activate Chk2.
Resumo:
In order to study the effect of arsenic on DNA damage, Sprague-Dawley rats were dosed with sodium arsenite (10 mg/kg) with or without 800 mug of benzo(a)pyrene (BP) by intramammilary injection. The animals were sacrificed on day 1, 3, 5, 10 and 27 and the mammary gland tissues were collected for DNA adduct measurement using a P-32 post-labeling assay. Animals dosed with arsenic alone did not show any DNA adducts. DNA adduct levels in rats dosed with BP alone reached a maximum level by day 5, reducing to 13% of this level by day 27. Adduct levels in rats dosed with arsenic and BP also reached a maximum by day 5 but only 80% of the level observed in the BP group. However, 84% of this amount still remained by day 27. The First Nucleotide Change (FNC) technique was used for the screening of 115 samples of various tissues from mice that had been chronically exposed to sodium arsenate for over 2 years revealed that inorganic arsenic did not attack the two putative hotspots (codons 131 and 154) of the hOGG1 gene. These results support the hypothesis that arsenic exerts its biological activity through DNA repair inhibition. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
The integrity of DNA purine bases was herein used to evaluate the antioxidant capacity. Unlike other DNA-based antioxidant sensors reported so far, the damaging agent chosen was the O 2 radical enzymatically generated by the xanthine/xanthine oxidase system. An adenine-rich oligonucleotide was adsorbed on carbon paste electrodes and subjected to radical damage in the presence/absence of several antioxidant compounds. As a result, partial damage on DNA was observed. A minor product of the radical oxidation was identified by cyclic voltammetry as a diimine adenine derivative also formed during the electrochemical oxidation of adenine/guanine bases. The protective efficiency of several antioxidant compounds was evaluated after electrochemical oxidation of the remaining unoxidized adenine bases, by measuring the electrocatalytic current of NADH mediated by the adsorbed catalyst species generated. A comparison between O 2 and OH radicals as a source of DNA lesions and the scavenging efficiency of various antioxidant compounds against both of them is discussed. Finally, the antioxidant capacity of beverages was evaluated and compared with the results obtained with an optical method.
Resumo:
To counteract and prevent the deleterious effect of free radicals the living organisms have developed complex endogenous and exogenous antioxidant systems. Several analytical methodologies have been proposed in order to quantify antioxidants in food, beverages and biological fluids. This paper revises the electroanalytical approaches developed for the assessment of the total or individual antioxidant capacity. Four electrochemical sensing approaches have been identified, based on the direct electrochemical detection of antioxidant at bare or chemically modified electrodes, and using enzymatic and DNA-based biosensors.
Resumo:
Nutrition science has evolved into a multidisciplinary field that applies molecular biology and integrates individual health with the epidemiologic investigation of population health. Nutritional genomics studies the functional interaction of food and its components, macro and micronutrients, with the genome at the molecular, cellular, and systemic level. Diet can influence cancer development in several ways, namely direct action of carcinogens in food that can damage DNA, diet components (macro or micronutrients) that can block or induce enzymes involved in activation or deactivation of carcinogenic substances. Moreover, inadequate intake of some molecules involved in DNA synthesis, repair or methylation can influence mutation rate or changes in gene expression. Several studies support the idea that diet can influence the risk of cancer; however information concerning the precise dietary factor that determines human cancer is an ongoing debate. A lot of epidemiological studies, involving food frequency questionnaires, have been developed providing important information concerning diet and cancer, however, diet is a complex composite of various nutrients (macro and micronutrients) and non-nutritive food constituents that makes the search for specific factors almost limitless.
Resumo:
RESUMO:Em 1994 a acrilamida (AA) foi classificada pela IARC como um provável cancerígeno para o homem. Para além da utilização de AA em numerosas aplicações industriais, a AA está também presente numa grande variedade de alimentos ricos em amido e processados a temperaturas elevadas. Esta exposição através da ingestão de produtos alimentares despoletou elevadas preocupações ao nível do risco para a saúde pública e poderá implicar um risco adicional para o aparecimento de cancro. A glicidamida (GA), o metabolito epóxido formado a partir da oxidação da AA provavelmente através do citocromo P450 2E1, é considerada por vários estudos, o principal responsável pela carcinogenicidade da AA. Actualmente existe uma escassez de resultados relativamente aos mecanismos de genotoxicidade da AA e GA em células de mamífero. Por este motivo, o objectivo deste estudo centra-se na avaliação das consequências genéticas da exposição à AA e GA, recorrendo-se para tal ao uso de células de mamífero como modelo. Tendo como base este objectivo avaliou-se a citotoxicidade da AA e GA, através do ensaio do MTT, e realizaram-se dois testes citogenéticos, o teste das aberrações cromossómicas (CAs) e o teste da troca de cromátides irmãs (SCEs), de modo a avaliar as lesões de DNA induzidas por estes compostos em células de hamster Chinês V79. Os resultados globalmente mostraram que a GA é mais citotóxica e clastogénica do que a AA. No âmbito deste trabalho, foi também efectuada a quantificação de aductos específicos de DNA, nomeadamente N7-(2-carbamoil-2-hidroxietil)guanina (N7-GA-Gua) e N3-(2-carbamoil-2-hidroxietil)adenina (N3-GA-Ade). Os resultados obtidos permitem afirmar que os níveis de N7-GA-Gua e a concentração de GA apresentam uma relação linear dose-resposta. Foi também identificada uma óptima correlação entre os níveis de N7-GA-Gua e a frequência de troca de cromátides irmãs. Adicionalmente, e de forma a compreender os mecanismos de toxicidade da AA, estudaram-se os mecanismos dependentes da modulação do glutationo reduzido (GSH), nomeadamente da butionina sulfoximina (BSO), um inibidor da síntese de GSH, do GSH-monoetil estér (GSH-EE), um composto permeável nas células e que é intra-celularmente hidrolisado a GSH e ainda do GSH adicionado exogenamente ao meio de cultura, em células V79. Os resultados obtidos reforçaram o papel da modulação do GSH nos efeitos de citotoxicidade e clastogenicidade da AA. Para além dos estudos efetuados com células V79, procedeu-se também à determinação da frequência de SCEs, à quantificação de aductos específicos de DNA, bem como ao ensaio do cometa alcalino em amostras de dadores saudáveis expostos à AA e GA. Tanto os resultados obtidos através do ensaio das SCE, como pela quantificação de aductos específicos de DNA, ambos efectuados em linfócitos estimulados, originaram resultados comparáveis aos obtidos anteriormente para as células V79, reforçando a ideia de que a GA é bastante mais genotóxica do que a AA. Por outro lado, os resultados obtidos pelo ensaio do cometa para exposição à AA e GA mostraram que apenas esta última aumenta o nível das lesões de DNA. Outro objectivo deste trabalho, foi a identificação de possíveis associações existentes entre as lesões de DNA, quantificadas através do ensaio das SCEs e do cometa, e biomarcadores de susceptibilidade, tendo em conta os polimorfismos genéticos individuais envolvidos na destoxificação e nas vias de reparação do DNA (BER, NER, HRR e NHEJ) em linfócitos expostos à GA. Tal permitiu identificar associações entre os níveis de lesão de DNA determinados através do ensaio das SCEs, e os polimorfismos genéticos estudados, apontando para uma possível associação entre o GSTP1 (Ile105Val) e GSTA2 (Glu210Ala) e a frequência de SCEs. Por outro lado, os resultados obtidos através do ensaio do cometa sugerem uma associação entre as lesões de DNA e polimorfismos da via BER (MUTYH Gln335His e XRCC1 Gln39Arg) e da via NER (XPC Ala499val e Lys939Gln), considerando os genes isoladamente ou combinados. Estes estudos contribuem para um melhor entendimento da genotoxicidade e carcinogenicidade da AA e GA em células de mamífero, bem como da variabilidade da susceptibilidade individual na destoxificação e reparação de lesões de DNA provocadas pela exposição a estes xenobióticos alimentares. ----------- ABSTRACT:Acrylamide (AA) has been classified as a probable human carcinogen by IARC. Besides being used in numerous industrial applications, AA is also present in a variety of starchy cooked foods. This AA exposure scenario raised concerns about risk in human health and suggests that the oral consumption of AA is an additional risk factor for cancer. A considerable number of findings strongly suggest that the reactive metabolite glycidamide (GA), an epoxide generated presumably by cytochrome P450 2E1, plays a central role in AA carcinogenesis. Until now there are a scarcity of results concerning the mechanisms of genotoxicity of AA and GA in mammalian cells. In view of that, the study described in this thesis aims to unveil the genetic consequences of AA and GA exposure using mammalian cells as a model system. With this aim we evaluated the cytotoxicity of AA and GA using the MTT assay and subsequently performed two cytogenetic end-points: chromosomal aberrations (CAs) and sister chromatid exchanges (SCEs), in order to evaluate DNA damage induced by these compounds in V79 Chinese hamster cell line. The results showed that GA was more cytotoxic and clastogenic than AA. Within the scope of this thesis the quantification of specific DNA adducts were also performed, namely N7-(2-carbamoyl-2-hydroxyethyl)guanine (N7-GA-Gua) and N3-(2-carbamoyl-2-hydroxyethyl)adenine (N3-GA-Ade). Interestingly, the GA concentration and the levels of N7-GA-Gua presented a linear dose-response relationship. Further, a very good correlation between the levels of N7-GA-Gua and the extent of SCEs were observed. In order to understand the mechanisms of AA-induced toxicity, the modulation of reduced glutathione (GSH)-dependent mechanisms were studied, namely the evaluation of the effect of buthionine sulfoximine (BSO), an effective inhibitor of GSH synthesis, of GSH-monoethyl ester (GSH-EE), a cell permeable compound that is intracellularly hydrolysed to GSH and also of GSH endogenously added to culture medium,z in V79 cell line. The overall results reinforced the role of GSH in the modulation of the cytotoxic and clastogenic effects induced by AA.Complementary to the studies performed in V79 cells, SCEs, specific DNA-adducts and alkaline comet assay in lymphocytes from healthy donors exposed to AA and GA were also evaluated. Both, the frequency of SCE and the quantification of specific GA DNA adducts, produced comparable results with those obtained in V79 cell line, reinforcing the idea that GA is far more genotoxic than AA. Further, the DNA damaging potential of AA and GA in whole blood leukocytes evaluated by the alkaline comet assay, showed that GA, but not AA, increases DNA damage. Additionally, this study aimed to identify associations between DNA damage and biomarkers of susceptibility, concerning individual genetic polymorphisms involved in detoxification and DNA repair pathways (BER, NER, HRR and NHEJ) on the GA-induced genotoxicity assessed by the SCE assay and by the alkaline comet assay. The extent of DNA damage determined by the levels of SCEs induced by GA seems to be modulated by GSTP1 (Ile105Val) and GSTA2 (Glu210Ala) genotypes. Moreover, the results obtained from the comet assay suggested associations between DNA damage and polymorphisms of BER (MUTYH Gln335His and XRCC1 Gln399Arg) and NER (XPC Ala499Val and Lys939Gln) genes, either alone or in combination. The overall results from this study contribute to a better understanding of the genotoxicity and carcinogenicity of AA and GA in mammalian cells, as well as the knowledge about the variability in individual susceptibility involved in detoxification and repair of DNA damage due to these dietary xenobiotics.
Resumo:
Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is an untreatable autosomal dominant neurodegenerative disease, and the most common such inherited ataxia worldwide. The mutation in SCA3 is the expansion of a polymorphic CAG tri-nucleotide repeat sequence in the C-terminal coding region of the ATXN3 gene at chromosomal locus 14q32.1. The mutant ATXN3 protein encoding expanded glutamine (polyQ) sequences interacts with multiple proteins in vivo, and is deposited as aggregates in the SCA3 brain. A large body of literature suggests that the loss of function of the native ATNX3-interacting proteins that are deposited in the polyQ aggregates contributes to cellular toxicity, systemic neurodegeneration and the pathogenic mechanism in SCA3. Nonetheless, a significant understanding of the disease etiology of SCA3, the molecular mechanism by which the polyQ expansions in the mutant ATXN3 induce neurodegeneration in SCA3 has remained elusive. In the present study, we show that the essential DNA strand break repair enzyme PNKP (polynucleotide kinase 3'-phosphatase) interacts with, and is inactivated by, the mutant ATXN3, resulting in inefficient DNA repair, persistent accumulation of DNA damage/strand breaks, and subsequent chronic activation of the DNA damage-response ataxia telangiectasia-mutated (ATM) signaling pathway in SCA3. We report that persistent accumulation of DNA damage/strand breaks and chronic activation of the serine/threonine kinase ATM and the downstream p53 and protein kinase C-d pro-apoptotic pathways trigger neuronal dysfunction and eventually neuronal death in SCA3. Either PNKP overexpression or pharmacological inhibition of ATM dramatically blocked mutant ATXN3-mediated cell death. Discovery of the mechanism by which mutant ATXN3 induces DNA damage and amplifies the pro-death signaling pathways provides a molecular basis for neurodegeneration due to PNKP inactivation in SCA3, and for the first time offers a possible approach to treatment.
Resumo:
In the course of its complex life cycle, the parasite Schistosoma mansoni need to adapt to distinct environments, and consequently is exposed to various DNA damaging agents. The Schistosoma genome sequencing initiative has uncovered sequences from genes and transcripts related to the process of DNA damage tolerance as the enzymes UBC13, MMS2, and RAD6. In the present work, we evaluate the importance of this process in different stages of the life cycle of this parasite. The importance is evidenced by expression and phylogenetic profiles, which show the conservation of this pathway from protozoa to mammalians on evolution.
Resumo:
During its life cycle Leishmania spp. face several stress conditions that can cause DNA damages. Base Excision Repair plays an important role in DNA maintenance and it is one of the most conserved mechanisms in all living organisms. DNA repair in trypanosomatids has been reported only for Old World Leishmania species. Here the AP endonuclease from Leishmania (L.) amazonensis was cloned, expressed in Escherichia coli mutants defective on the DNA repair machinery, that were submitted to different stress conditions, showing ability to survive in comparison to the triple null mutant parental strain BW535. Phylogenetic and multiple sequence analyses also confirmed that LAMAP belongs to the AP endonuclease class of proteins.
Resumo:
Adeno-associated virus type 2 (AAV2) infection incites cells to arrest with 4N DNA content or die if the p53 pathway is defective. This arrest depends on AAV2 DNA, which is single stranded with inverted terminal repeats that serve as primers during viral DNA replication. Here, we show that AAV2 DNA triggers damage signaling that resembles the response to an aberrant cellular DNA replication fork. UV treatment of AAV2 enhances the G2 arrest by generating intrastrand DNA cross-links which persist in infected cells, disrupting viral DNA replication and maintaining the viral DNA in the single-stranded form. In cells, such DNA accumulates into nuclear foci with a signaling apparatus that involves DNA polymerase delta, ATR, TopBP1, RPA, and the Rad9/Rad1/Hus1 complex but not ATM or NBS1. Focus formation and damage signaling strictly depend on ATR and Chk1 functions. Activation of the Chk1 effector kinase leads to the virus-induced G2 arrest. AAV2 provides a novel way to study the cellular response to abnormal DNA replication without damaging cellular DNA. By using the AAV2 system, we show that in human cells activation of phosphorylation of Chk1 depends on TopBP1 and that it is a prerequisite for the appearance of DNA damage foci.
Resumo:
DNA that survives in museum specimens, bones and other tissues recovered by archaeologists is invariably fragmented and chemically modified. The extent to which such modifications accumulate over time is largely unknown but could potentially be used to differentiate between endogenous old DNA and present-day DNA contaminating specimens and experiments. Here we examine mitochondrial DNA sequences from tissue remains that vary in age between 18 and 60,000 years with respect to three molecular features: fragment length, base composition at strand breaks, and apparent C to T substitutions. We find that fragment length does not decrease consistently over time and that strand breaks occur preferentially before purine residues by what may be at least two different molecular mechanisms that are not yet understood. In contrast, the frequency of apparent C to T substitutions towards the 5'-ends of molecules tends to increase over time. These nucleotide misincorporations are thus a useful tool to distinguish recent from ancient DNA sources in specimens that have not been subjected to unusual or harsh treatments.
Resumo:
Nucleotide excision repair (NER) is an evolutionary conserved DNA repair system that is essential for the removal of UV-induced DNA damage. In this study we investigated how NER is compartmentalized in the interphase nucleus of human cells at the ultrastructural level by using electron microscopy in combination with immunogold labeling. We analyzed the role of two nuclear compartments: condensed chromatin domains and the perichromatin region. The latter contains transcriptionally active and partly decondensed chromatin at the surface of condensed chromatin domains. We studied the distribution of the damage-recognition protein XPC and of XPA, which is a central component of the chromatin-associated NER complex. Both XPC and XPA rapidly accumulate in the perichromatin region after UV irradiation, whereas only XPC is also moderately enriched in condensed chromatin domains. These observations suggest that DNA damage is detected by XPC throughout condensed chromatin domains, whereas DNA-repair complexes seem preferentially assembled in the perichromatin region. We propose that UV-damaged DNA inside condensed chromatin domains is relocated to the perichromatin region, similar to what has been shown for DNA replication. In support of this, we provide evidence that UV-damaged chromatin domains undergo expansion, which might facilitate the translocation process. Our results offer novel insight into the dynamic spatial organization of DNA repair in the human cell nucleus.
Resumo:
Fluorescence microscopy has enabled the analysis of both the spatial distribution of DNA damage and its dynamics during the DNA damage response (DDR). Three microscopic techniques can be used to study the spatiotemporal dynamics of DNA damage. In the first part we describe how we determine the position of DNA double-strand breaks (DSBs) relative to the nuclear envelope. The second part describes how to quantify the co-localization of DNA DSBs with nuclear pore clusters, or other nuclear subcompartments. The final protocols describe methods for the quantification of locus mobility over time.