913 resultados para RF magnetron sputtering
Resumo:
A custom-designed inductively coupled plasma (ICP)-assisted radio-frequency magnetron sputtering deposition system has been employed to synthesize aluminium-doped zinc oxide (ZnO:Al) nanofilms on glass substrates at room temperature. The effects of film thickness and ZnO target (partially covered by Al chips) power on the structural, electrical and optical properties of the ZnO:Al nanofilms are studied. A high growth rate (∼41 nm/min), low electrical sheet resistance (as low as 30 Ω/□) and high optical transparency (>80%) over the visible spectrum has been achieved at a film thickness of ∼615 nm and ZnO target power of 150 W. The synthesis of ZnO:Al nanofilms at room temperature and with high growth rates is attributed to the unique features of the ICP-assisted radio-frequency magnetron sputtering deposition approach. The results are relevant to the development of photovoltaic thin-film solar cells and flat panel displays.
Resumo:
This contribution sheds light on the role of crystal size and phase composition in inducing biomimetic apatite growth on the surface of nanostructured titania films synthesized by reactive magnetron sputtering of Ti targets in Ar+O2 plasmas. Unlike most existing techniques, this method enables one to deposit highly crystalline titania films with a wide range of phase composition and nanocrystal size, without any substrate heating or postannealing. Moreover, by using this dry plasma-based method one can avoid surface hydroxylation at the deposition stage, almost inevitable in wet chemical processes. Results of this work show that high phase purity and optimum crystal size appear to be the essential requirement for efficient apatite formation on magnetron plasma-fabricated bioactive titania coatings. © 2006 Wiley Periodicals, Inc.
Resumo:
The aim of the paper is to give a feasibility study on the material deposition of Nanoscale textured morphology of titanium and titanium oxide layers on titanium and glass substrates. As a recent development in nanoscale deposition, Physical Vapor Deposition (PVD) based DC magnetron sputtering has been the choice for the deposition process. The nanoscale morphology and surface roughness of the samples have been characterized using Atomic Force Microscope (AFM). The surface roughnesses obtained from AFM have been compared using surface profiler. From the results we can say that the roughness values are dependent on the surface roughness of the substrate. The glass substrate was relatively smoother than the titanium plate and hence lower layer roughness was obtained. From AFM a unique nano-pattern of a boomerang shaped titanium oxide layer on glass substrate have been obtained. The boomerang shaped nano-scale pattern was found to be smaller when the layer was deposited at higher sputtering power. This indicated that the morphology of the deposited titanium oxide layer has been influenced by the sputtering power.
Resumo:
Tungsten oxide thin films are of great interest due to their promising applications in various optoelectronic thin film devices. We have investigated the microstructural evolution of tungsten oxide thin films grown by DC magnetron sputtering on silicon substrate. The structural characterization and surface morphology were carried out using X-ray diffraction and Scanning Electron Microscopy (SEM). The as deposited films were amorphous, where as, thin films annealed above 400 degrees C were crystalline. In order to explain the microstructural changes due to annealing, we have proposed a ``instability wheel'' model for the evolution of the microstructure. This model explains the transformation of mater into various geometries within them selves, followed by external perturbation.
Resumo:
An amorphous silicon carbonitride (Si1-x-yCxN y, x = 0:43, y = 0:31) coating was deposited on polyimide substrate using the magnetron-sputtering method. Exposure tests of the coated polyimide in atomic oxygen beam and vacuum ultraviolet radiation were performed in a ground-based simulator. Erosion kinetics measurements indicated that the erosion yield of the Si0.26C0.43N0.31 coating was about 1.5x and 1.8 × 10-26 cm3 /atom during exposure in single atomic oxygen beam, simultaneous atomic oxygen beam, and vacuum ultraviolet radiation, respectively. These values were 2 orders of magnitude lower than that of bare polyimide substrate. Scanning electron and atomic force microscopy, X-ray photoelectron spectrometer, and Fourier transformed infrared spectroscopy investigation indicated that during exposures, an oxide-rich layer composed of SiO2 and minor Si-C-O formed on the surface of the Si 0.26C0.43N0.31 coating, which was the main reason for the excellent resistance to the attacks of atomic oxygen. Moreover, vacuum ultraviolet radiation could promote the breakage of chemical bonds with low binding energy, such as C-N, C = N, and C-C, and enhance atomic oxygen erosion rate slightly.
Resumo:
Pure and W-doped ZnO thin films were obtained using magnetron sputtering at working pressures of 0.4 Pa and 1.33 Pa. The films were deposited on glass and alumina substrates at room temperature and subsequently annealed at 400oC for 1 hour in air. The effects of pressure and W-doping on the structure, chemical, optical and electronic properties of the ZnO films for gas sensing were examined. From AFM, the doped film deposited at higher pressure (1.33 Pa) has spiky morphology with much lower grain density and porosity compared to the doped film deposited at 0.4 Pa. The average gain size and roughness of the annealed films were estimated to be 65 nm and 2.2 nm, respectively with slightly larger grain size and roughness appeared in the doped films. From XPS the films deposited at 1.33 Pa favored the formation of adsorbed oxygen on the film surface and this has been more pronounced in the doped film which created active sites for OH adsorption. As a consequence the W-doped film deposited at 1.33 Pa was found to have lower oxidation state of W (35.1 eV) than the doped film deposited at 0.4 Pa (35.9 eV). Raman spectra indicated that doping modified the properties of the ZnO film and induced free-carrier defects. The transmittance of the samples also reveals an enhanced free-carrier density in the W-doped films. The refractive index of the pure film was also found to increase from 1.7 to 2.2 after W-doping whereas the optical band gap only slightly increased. The W-doped ZnO film deposited at 0.4 Pa appeared to have favorable properties for enhanced gas sensing. This film showed significantly higher sensing performance towards 5-10 ppm NO2 at lower operating temperature of 150oC most dominantly due to increased free-carrier defects achieved by W-doping.
Resumo:
Nanostructured copper(II) oxide film was deposited using reactive DC magnetron sputtering. It has been characterized using XRD, EDAX, XPS, and FESEM. The grain size of copper oxide film was found to be 40-65 nm with size distribution. The entire study was divided into two parts. In the first part, the film has been studied for its response to alcohol at different temperatures to find the optimum sensing temperature, whereas in the second part, the film sensitivity to different alcohol concentrations were studied at fixed optimum operating temperature. The optimum temperature for the response of ethanol was observed to be 400 C,and the response for different concentrations was found to be almost linear.
Resumo:
The effect of substrate and annealing temperatures on mechanical properties of Ti-rich NiTi films deposited on Si (100) substrates by DC magnetron sputtering was studied by nanoindentation. NiTi films were deposited at two substrate temperatures viz. 300 and 400 degrees C. NiTi films deposited at 300 degrees C were annealed for 4 h at four different temperatures, i.e. 300, 400, 500 and 600 degrees C whereas films deposited at 400 degrees C were annealed for 4 h at three different temperatures, i.e. 400, 500 and 600 degrees C. The elastic modulus and hardness of the films were found to be the same in the as-deposited as well as annealed conditions for both substrate temperatures. For a given substrate temperature, the hardness and elastic modulus were found to remain unchanged as long as the films were amorphous. However, both elastic modulus and hardness showed an increase with increasing annealing temperature as the films become crystalline. The results were explained on the basis of the change in microstructure of the film with change in annealing temperature.
Resumo:
NiTi thin films deposited by DC magnetron sputtering of an alloy (Ni/Ti:45/55) target at different deposition rates and substrate temperatures were analyzed for their structure and mechanical properties. The crystalline structure, phase-transformation and mechanical response were characterized by X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC) and Nano-indentation techniques, respectively. The films were deposited on silicon substrates maintained at temperatures in the range 300 to 500 degrees C and post-annealed at 600 degrees C for four hours to ensure film crystallinity. Films deposited at 300 degrees C and annealed for 600 degrees C have exhibited crystalline behavior with Austenite phase as the prominent phase. Deposition onto substrates held at higher deposition temperatures (400 and 500 degrees C) resulted in the co-existence of Austenite phase along with Martensite phase. The increase in deposition rates corresponding to increase in cathode current from 250 to 350 mA has also resulted in the appearance of Martensite phase as well as improvement in crystallinity. XRD analysis revealed that the crystalline film structure is strongly influenced by process parameters such as substrate temperature and deposition rate. DSC results indicate that the film deposited at 300 degrees C had its crystallization temperature at 445 degrees C in the first thermal cycle, which is further confirmed by stress temperature response. In the second thermal cycle the Austenite and Martensite transitions were observed at 75 and 60 degrees C respectively. However, the films deposited at 500 degrees C had the Austenite and Martensite transitions at 73 and 58 degrees C, respectively. Elastic modulus and hardness values increased from 93 to 145 GPa and 7.2 to 12.6 GPa, respectively, with increase in deposition rates. These results are explained on the basis of change in film composition and crystallization. (C) 2010 Published by Elsevier Ltd
Resumo:
Titanium nitride films of a thickness of similar to 1.5 mu m were deposited on amorphous and crystalline substrates by DC reactive magnetron sputtering at ambient temperature with 100% nitrogen in the sputter gas. The growth of nanostructured, i.e. crystalline nano-grain sized, films at ambient temperature is demonstrated. The microstructure of the films grown on crystalline substrates reveals a larger grain size/crystallite size than that of the films deposited on amorphous substrates. Specular reflectance measurements on films deposited on different substrates indicate that the position of the Ti-N 2s band at 2.33 eV is substrate-dependent, indicating substrate-mediated stoichiometry. This clearly demonstrates that not only structure and microstructure, but also chemical composition of the films is substrate-influenced. The films deposited on amorphous substrates display lower hardness and modulus values than the films deposited on crystalline substrates, with the highest value of hardness being 19 GPa on a lanthanum aluminate substrate. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Thin films of zirconia have been synthesized using reactive DC magnetron sputtering. It has been found that films with good optical constants, high refractive index (1.9 at 600 nm) and low extinction coefficient can be prepared al ambient temperatures. The optical constants and band gnp and hence the composition nle dependent on the deposition parameters such as target power, rate of deposition and oxygen background pressure. Thermal annealing of the films revealed that tile films showed optical and crystalline inhomogeneity and also large variations in optical constants.
Resumo:
Rapid thermal processed thin films of reactively sputtered tantalum pentoxide Ta2O5 thin films have been deposited on silicon and platinum coated silicon substrates by reactive magnetron sputtering. The as-deposited films were amorphous and showed good electrical properties in terms of a dielectric permittivity of about 24 and leakage current density of 9 x 10(-8) A cm(-2). A rapid thermal annealing process at temperatures above 700 degrees C crystallized the films, increased the dielectric relative permittivity, and decreased the leakage current. The dielectric constant for a film rapidly annealed at 850 degrees C increased to 45 and its leakage current density lowered to 2 x 10(-8) A cm(-2). The dielectric measurements in the MIS configuration showed that Ta2O5 might be used as a dielectric material instead of SiO2 or Si3N4 for integrated devices. The current voltage characteristics observed at low and high fields suggested different conduction mechanisms.
Resumo:
Diamond like carbon films deposited by RF magnetron sputter deposition technique contain both SP2 and SP3 hybridized carbons. These films are structurally disordered and inhomogeneous. By the application of electric field across the film, these films are transformed to a more orderly structured diamond like carbon, bringing homogenity in the film. This transformation has resulted in the increase of the reflectivity of the metal(Aluminum), which is used as one of the electrodes for applying the electric field, by 5 times.
Resumo:
Nanoindentation tests were carried out at different locations in a Ti rich NiTi film deposited on a 3 `' silicon wafer by dc magnetron sputtering. The purpose of doing nanoindentation at different locations was to check the uniformity of the sample with respect to its mechanical behaviour and shape memory effect. The results showed that elastic modulus and hardness measured by nanoindentation was similar at different locations in the 3 `' wafer. Nanoindcntation coupled with depth profiling of residual indents using AFM also showed that the extent of shape memory recovery obtained by heating the film above its martensite to austcnite phase transformation temperature was also similar at different locations in the 3 `' wafer. However, the measured recovery ratio was lower than that predicted from theoretical calculations for indents made using Berkovich indenter. The results showed that the deposition process resulted in a NiTi film with uniform composition, mechanical properties and shape memory behaviour.
Resumo:
The effect of deposition temperature on residual stress evolution with temperature in Ti-rich NiTi films deposited on silicon substrates was studied. Ti-rich NiTi films were deposited on 3? Si (100) substrates by DC magnetron sputtering at three deposition temperatures (300, 350 and 400 degrees C) with subsequent annealing in vacuum at their respective deposition temperatures for 4 h. The initial value of residual stress was found to be the highest for the film deposited and annealed at 400 degrees C and the lowest for the film deposited and annealed at 300 degrees C. All the three films were found to be amorphous in the as-deposited and annealed conditions. The nature of the stress response with temperature on heating in the first cycle (room temperature to 450 degrees C) was similar for all three films although the spike in tensile stress, which occurs at similar to 330 degrees C, was significantly higher in the film deposited and annealed at 300 degrees C. All the films were also found to undergo partial crystallisation on heating up to 450 degrees C and this resulted in decrease in the stress values around 5560 degrees C in the cooling cycle. The stress response with temperature in the second thermal cycle (room temperature to 450 degrees C and back), which is reflective of the intrinsic film behaviour, was found to be similar in all cases and the elastic modulus determined from the stress response was also more or less identical. The three deposition temperatures were also not found to have a significant effect on the transformation characteristics of these films such as transformation start and finish temperatures, recovery stress and hysteresis.