915 resultados para REINFORCED RUBBER COMPOSITES
Resumo:
Rubber ferrite composites containing various mixed ferrites were prepared for different compositions and various loadings. The magnetic and dielectric properties of the fillers as well as the ferrite filled matrixes were evaluated separately. The results are correlated. Simple equations are proposed to predetermine the magnetic and dielectric properties. The validity of these equations is verified and they are found to be in good agreement. These equations are useful in tailoring the magnetic and dielectric properties of these composites with predetermined properties
Resumo:
Rubber ferrite composites have the unique advantage of mouldability, which is not easily obtainable using ceramic magnetic materials. The incorporation of mixed ferrites in appropriate weight ratios into the rubber matrix not only modi es the dielectric properties of the composite but also imparts magnetic properties to it. Mixed ferrites belonging to the series of Mn(1 – x )Znx Fe2O4 have been synthesised with diVerent values of x in steps of 0·2, using conventional ceramic processing techniques. Rubber ferrite composites were prepared by the incorporation of these pre-characterised polycrystallineMn(1 – x )Znx Fe2O4 ceramics into a natural rubber matrix at diVerent loadings according to a speci c recipe. The processability of these elastomers was determined by investigating their cure characteristics. The magnetic properties of the ceramic llers as well as of the rubber ferrite composites were evaluated and the results were correlated. Studies of the magnetic properties of these rubber ferrite composites indicate that the magnetisation increases with loading of the ller without changing the coercive eld. The hardness of these composites shows a steady increase with the loading of the magnetic llers. The evaluation of hardness andmagnetic characteristics indicates that composites with optimummagnetisation and almost minimum stiVness can be achieved with a maximum loading of 120 phr of the ller at x=0·4. From the data on the magnetisation of the composites, a simple relationship connecting the magnetisation of the rubber ferrite composite and the ller was formulated. This can be used to synthesise rubber ferrite composites with predetermined magnetic properties
Resumo:
Rubber ferrite composites (RFCs) containing powdered nickel zinc ferrite (Ni1 – xZnxFe2O4 ) in a natural rubber matrix have been prepared and their mechanical and dielectric properties have been evaluated. Variations in the relative permittivity of both the ferrite ceramics and RFCs have been studied over a range of frequencies, ceramic compositions, ceramic ller loadings, and temperatures, and the results have been correlated. Appropriate mixture equations have been formulated to calculate the dielectric permittivity of the composite from the dielectric permittivity of its constituents. Values calculated using these equations have been compared with experimental data on relative permittivity, and the two have been found to be in good agreement. In the present investigationit was also observed that for x=0·4 and for the maximum ferrite loading, the composite sample exhibits maximum magnetisation and optimum exibility
Resumo:
Nickel–rubber nanocomposites were synthesized by incorporating ferromagnetic nickel nanoparticles in a natural rubber as well as neoprene rubber matrix. Complex dielectric permittivity and magnetic permeability of these composites were evaluated in the X-band microwave frequencies at room temperature using cavity perturbation technique. The dielectric loss in natural rubber is smaller compared to neoprene rubber. A steady increase in the dielectric permittivity is observed with increase in the content of nickel in both the composites. The magnetic permeability exhibits a steady decrease with increase in frequency and magnetic loss shows a relaxation at 8 GHz. The suitability of these composites as microwave absorbers is modeled based on the reflection loss which is dependant on the real and imaginary components of the complex dielectric permittivity and magnetic permeability.
Resumo:
Rubber ferrite composites (RFC) are magnetic polymer composites and have a variety of applications as flexible magnets, pressure=photo sensors, and microwave absorbers. The mouldability into complex shapes is one of the advantages of these magnetic elastomers. They have the potential of replacing the conventional ceramic materials, due to theire flexible nature. In the present study, the incorporation of pre-characterized hexagonal ferrites, namely barium ferrite (BaFe12O19), into natural rubber matrix is carried out according to a suitable recipe for various loadings of the filler. The processability of these compounds was determined by evaluating the cure characteristics: scorch time, cure time, and minimum and maximum torque. It has been found that the addition of magnetic fillers does not affect the processability of the composites, whereas the physical properties are modified. The magnetic properties of these composites containing various loadings of the magnetic filler were also investigated. The magnetic properties of RFC can be controlled by the addition of appropriate amount of the ferrite filler.
Resumo:
Ultra fine nickel ferrite have been synthesized by the sol-gel method. By heat treating different portions of the prepared powder separately at different temperatures, nano-sized particles of nickel ferrite with varying particle sizes were obtained. These powders were characterised by the X-ray diffraction and then incorporated in the nitrile rubber matrix according to a specific recipe for various loadings. The cure characteristics and the mechanical properties of these rubber ferrite composites (RFCs) were evaluated. The effect of loading and the grain size of the filler on the cure characteristics and tensile properties were also evaluated. It is found that the grain size and porosity of the filler plays a vital role in determining the mechanical properties of the RFCs
Resumo:
Rubber ferrite composites were prepared by incorporating nickel ferrite in a neoprene rubber matrix. Kinetics of the cure reaction were determined from the rheometric torque values and found to follow first-order kinetics. Analysis of the swelling behavior of the rubber ferrite composites in toluene elucidates the mechanism of solvent penetration and sorption characteristics, and reveals the extent of the physical interaction of the ferrite particles with the neoprene rubber matrix. Mechanical properties of rubber ferrite composites were determined, which support the reinforcing nature of nickel ferrite to the neoprene rubber matrix. These results show that magnetic composites with the required processing safety can be prepared economically by incorporating higher amounts of nickel ferrite in the neoprene rubber matrix
Resumo:
La present tesi proposa una metodología per a la simulació probabilística de la fallada de la matriu en materials compòsits reforçats amb fibres de carboni, basant-se en l'anàlisi de la distribució aleatòria de les fibres. En els primers capítols es revisa l'estat de l'art sobre modelització matemàtica de materials aleatoris, càlcul de propietats efectives i criteris de fallada transversal en materials compòsits. El primer pas en la metodologia proposada és la definició de la determinació del tamany mínim d'un Element de Volum Representatiu Estadístic (SRVE) . Aquesta determinació es du a terme analitzant el volum de fibra, les propietats elàstiques efectives, la condició de Hill, els estadístics de les components de tensió i defromació, la funció de densitat de probabilitat i les funcions estadístiques de distància entre fibres de models d'elements de la microestructura, de diferent tamany. Un cop s'ha determinat aquest tamany mínim, es comparen un model periòdic i un model aleatori, per constatar la magnitud de les diferències que s'hi observen. Es defineix, també, una metodologia per a l'anàlisi estadístic de la distribució de la fibra en el compòsit, a partir d'imatges digitals de la secció transversal. Aquest anàlisi s'aplica a quatre materials diferents. Finalment, es proposa un mètode computacional de dues escales per a simular la fallada transversal de làmines unidireccionals, que permet obtenir funcions de densitat de probabilitat per a les variables mecàniques. Es descriuen algunes aplicacions i possibilitats d'aquest mètode i es comparen els resultats obtinguts de la simulació amb valors experimentals.
Resumo:
Thermally stable elastomeric composites based on ethylene-propylene-diene monomer (EPDM) and conducting polymer-modified carbon black (CPMCB) additives were produced by casting and crosslinked by compression molding. CPMCB represent a novel thermally stable conductive compound made via ""in situ"" deposition of intrinsically conducting polymers (ICP) such as polyaniline or polypyrrole on carbon black particles. Thermogravimetric analysis showed that the composites are thermally stable with no appreciable degradation at ca. 300 degrees C. Incorporating CPMCB has been found to be advantageous to the processing of composites, as the presence of ICP lead to a better distribution of the filler within the rubber matrix, as confirmed by morphological analysis. These materials have a percolation threshold range of 5-10 phr depending on the formulation and electrical dc conductivity values in the range of 1 x 10(-3) to 1 x 10(-2) S cm(-1) above the percolation threshold. A less pronounced reinforcing effect was observed in composites produced with ICP-modified additives in relation to those produced only with carbon black. The results obtained in this study show the feasibility of this method for producing stable, electrically conducting composites with elastomeric characteristics. POLYM. COMPOS., 30:897-906, 2009. (C) 2008 Society of Plastics Engineers
Resumo:
The in-depth oxypropylation of different types of cellulose fibers, namely Avicel, Rayon, Kraft, and Filter Paper, was investigated. New biphasic mono-component materials were obtained, which could be hot-pressed to form films of cellulose fibers dispersed into a thermoplastic matrix. The success of this chemical modification was assessed by FTIR spectroscopy, X-ray diffraction, scanning electron microscopy. differential scanning calorimetry, thermogravimetric analysis and contact angle measurements. The optimization of this process led to the establishment of the optimal molar ratio between the cellulose CH groups and propylene oxide, which varied as a function of the specific morphology of the fibers. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This work describes the partial oxypropylation of filter paper cellulose fibers, employing two different basic catalyst, viz., potassium hydroxide and 1,4-diazabicyclo [2.2.2] octane, to activate the hydroxyl groups of the polysaccharide and thus provide the anionic initiation sites for the ""grafting-from"" polymerization of propylene oxide. The success of this chemical modification was assessed by FTIR spectroscopy, X-ray diffraction, scanning electron microscopy, differential scanning calorimetry, thermogravimetric analysis and contact angle measurements. The study of the role of the catalyst employed on the extent of the modification and on the mechanical properties of the ensuing composites, after hot pressing, showed that both the Bronsted and the Lewis base gave satisfactory results, without any marked difference.
Resumo:
Resol type resins were prepared in alkaline conditions (potassium hydroxide or potassium carbonate) using furfural obtained by acid hydrolysis of abundant renewable resources from agricultural and forestry waste residues. The structures of the resins were fully determined by H-1, C-13, and 2D NMR spectrometries with the help of four models compounds synthesized specially for this study. MALDI-Tof mass spectrometry experiments indicated that a majority of linear oligomers and a minority of cyclic ones constituted them. Composites were prepared with furfural-phenol resins and sisal fibers. These fibers were chosen mainly because they came from natural lignocellulosic material and they presented excellent mechanical microscopy images indicated that the composites displayed excellent adhesion between resin and fibers. Impact strength measurement showed that mild conditions were more suitable to prepare thermosets. Nevertheless, mild conditions induced a high-diffusion coefficient for water absorption by composites. Composites with good properties could be prepared using high proportion of materials obtained from biomass without formaldehyde. (c) 2008 Wiley Periodicals, Inc.
Resumo:
The aim of this work is to study the replacement of currently used thermoplastics by composites reinforced with vegetable fibers with several advantages, mainly better mechanical properties, low weight and competitive cost compared to its counterparts. Extrusion and injection molding processes were studied using polypropylene (PP) matrix. The raw materials used were sugar cane bagasse, elephant grass, wood, milk cartons and recycled polypropylene. The composites were tested for bending, tension, hardness and impact resistance, following ASTM standards. The results obtained were extremely positive since they proved that natural fibers as reinforcement can be an important alternative to replace talc and other fillers.
Resumo:
In order to cooperate in minimizing the problems of the current and growing volume of waste, this work aim at the production of panels made from industrial waste -thermoplastic (polypropylene; polyethylene and acrylonitrile butadiene styrene) reinforced with agro-industrial waste - peach palm waste (shells and sheaths). The properties of the panels like density, thickness swelling, water absorption and moisture content were evaluated using the ASTM D1037; EN 317; and ANSI A208.1 standards regarding particle boards. Good results were obtained with formulations of 100% plastic waste; 70% waste plastics and 30% peach palm waste; and 60% waste plastics and 40% peach palm waste.