953 resultados para Quasilinear Equations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The three main topics of this work are independent systems and chains of word equations, parametric solutions of word equations on three unknowns, and unique decipherability in the monoid of regular languages. The most important result about independent systems is a new method giving an upper bound for their sizes in the case of three unknowns. The bound depends on the length of the shortest equation. This result has generalizations for decreasing chains and for more than three unknowns. The method also leads to shorter proofs and generalizations of some old results. Hmelevksii’s theorem states that every word equation on three unknowns has a parametric solution. We give a significantly simplified proof for this theorem. As a new result we estimate the lengths of parametric solutions and get a bound for the length of the minimal nontrivial solution and for the complexity of deciding whether such a solution exists. The unique decipherability problem asks whether given elements of some monoid form a code, that is, whether they satisfy a nontrivial equation. We give characterizations for when a collection of unary regular languages is a code. We also prove that it is undecidable whether a collection of binary regular languages is a code.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behavior of Petrov-Galerkin formulations for shallow water wave equations is evaluated numerically considering typical one-dimensional propagation problems. The formulations considered here use stabilizing operators to improve classical Galerkin approaches. Their advantages and disadvantages are pointed out according to the intrinsic time scale (free parameter) which has a particular importance in this kind of problem. The influence of the Courant number and the performance of the formulation in dealing with spurious oscillations are adressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stochastic differential equation (SDE) is a differential equation in which some of the terms and its solution are stochastic processes. SDEs play a central role in modeling physical systems like finance, Biology, Engineering, to mention some. In modeling process, the computation of the trajectories (sample paths) of solutions to SDEs is very important. However, the exact solution to a SDE is generally difficult to obtain due to non-differentiability character of realizations of the Brownian motion. There exist approximation methods of solutions of SDE. The solutions will be continuous stochastic processes that represent diffusive dynamics, a common modeling assumption for financial, Biology, physical, environmental systems. This Masters' thesis is an introduction and survey of numerical solution methods for stochastic differential equations. Standard numerical methods, local linearization methods and filtering methods are well described. We compute the root mean square errors for each method from which we propose a better numerical scheme. Stochastic differential equations can be formulated from a given ordinary differential equations. In this thesis, we describe two kind of formulations: parametric and non-parametric techniques. The formulation is based on epidemiological SEIR model. This methods have a tendency of increasing parameters in the constructed SDEs, hence, it requires more data. We compare the two techniques numerically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis we examine four well-known and traditional concepts of combinatorics on words. However the contexts in which these topics are treated are not the traditional ones. More precisely, the question of avoidability is asked, for example, in terms of k-abelian squares. Two words are said to be k-abelian equivalent if they have the same number of occurrences of each factor up to length k. Consequently, k-abelian equivalence can be seen as a sharpening of abelian equivalence. This fairly new concept is discussed broader than the other topics of this thesis. The second main subject concerns the defect property. The defect theorem is a well-known result for words. We will analyze the property, for example, among the sets of 2-dimensional words, i.e., polyominoes composed of labelled unit squares. From the defect effect we move to equations. We will use a special way to define a product operation for words and then solve a few basic equations over constructed partial semigroup. We will also consider the satisfiability question and the compactness property with respect to this kind of equations. The final topic of the thesis deals with palindromes. Some finite words, including all binary words, are uniquely determined up to word isomorphism by the position and length of some of its palindromic factors. The famous Thue-Morse word has the property that for each positive integer n, there exists a factor which cannot be generated by fewer than n palindromes. We prove that in general, every non ultimately periodic word contains a factor which cannot be generated by fewer than 3 palindromes, and we obtain a classification of those binary words each of whose factors are generated by at most 3 palindromes. Surprisingly these words are related to another much studied set of words, Sturmian words.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Symmetry group methods are applied to obtain all explicit group-invariant radial solutions to a class of semilinear Schr¨odinger equations in dimensions n = 1. Both focusing and defocusing cases of a power nonlinearity are considered, including the special case of the pseudo-conformal power p = 4/n relevant for critical dynamics. The methods involve, first, reduction of the Schr¨odinger equations to group-invariant semilinear complex 2nd order ordinary differential equations (ODEs) with respect to an optimal set of one-dimensional point symmetry groups, and second, use of inherited symmetries, hidden symmetries, and conditional symmetries to solve each ODE by quadratures. Through Noether’s theorem, all conservation laws arising from these point symmetry groups are listed. Some group-invariant solutions are found to exist for values of n other than just positive integers, and in such cases an alternative two-dimensional form of the Schr¨odinger equations involving an extra modulation term with a parameter m = 2−n = 0 is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose finite sample tests and confidence sets for models with unobserved and generated regressors as well as various models estimated by instrumental variables methods. The validity of the procedures is unaffected by the presence of identification problems or \"weak instruments\", so no detection of such problems is required. We study two distinct approaches for various models considered by Pagan (1984). The first one is an instrument substitution method which generalizes an approach proposed by Anderson and Rubin (1949) and Fuller (1987) for different (although related) problems, while the second one is based on splitting the sample. The instrument substitution method uses the instruments directly, instead of generated regressors, in order to test hypotheses about the \"structural parameters\" of interest and build confidence sets. The second approach relies on \"generated regressors\", which allows a gain in degrees of freedom, and a sample split technique. For inference about general possibly nonlinear transformations of model parameters, projection techniques are proposed. A distributional theory is obtained under the assumptions of Gaussian errors and strictly exogenous regressors. We show that the various tests and confidence sets proposed are (locally) \"asymptotically valid\" under much weaker assumptions. The properties of the tests proposed are examined in simulation experiments. In general, they outperform the usual asymptotic inference methods in terms of both reliability and power. Finally, the techniques suggested are applied to a model of Tobin’s q and to a model of academic performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dans ce travail, nous adaptons la méthode des symétries conditionnelles afin de construire des solutions exprimées en termes des invariants de Riemann. Dans ce contexte, nous considérons des systèmes non elliptiques quasilinéaires homogènes (de type hydrodynamique) du premier ordre d'équations aux dérivées partielles multidimensionnelles. Nous décrivons en détail les conditions nécessaires et suffisantes pour garantir l'existence locale de ce type de solution. Nous étudions les relations entre la structure des éléments intégraux et la possibilité de construire certaines classes de solutions de rang k. Ces classes de solutions incluent les superpositions non linéaires d'ondes de Riemann ainsi que les solutions multisolitoniques. Nous généralisons cette méthode aux systèmes non homogènes quasilinéaires et non elliptiques du premier ordre. Ces méthodes sont appliquées aux équations de la dynamique des fluides en (3+1) dimensions modélisant le flot d'un fluide isentropique. De nouvelles classes de solutions de rang 2 et 3 sont construites et elles incluent des solutions double- et triple-solitoniques. De nouveaux phénomènes non linéaires et linéaires sont établis pour la superposition des ondes de Riemann. Finalement, nous discutons de certains aspects concernant la construction de solutions de rang 2 pour l'équation de Kadomtsev-Petviashvili sans dispersion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La thèse est composée d’un chapitre de préliminaires et de deux articles sur le sujet du déploiement de singularités d’équations différentielles ordinaires analytiques dans le plan complexe. L’article Analytic classification of families of linear differential systems unfolding a resonant irregular singularity traite le problème de l’équivalence analytique de familles paramétriques de systèmes linéaires en dimension 2 qui déploient une singularité résonante générique de rang de Poincaré 1 dont la matrice principale est composée d’un seul bloc de Jordan. La question: quand deux telles familles sontelles équivalentes au moyen d’un changement analytique de coordonnées au voisinage d’une singularité? est complètement résolue et l’espace des modules des classes d’équivalence analytiques est décrit en termes d’un ensemble d’invariants formels et d’un invariant analytique, obtenu à partir de la trace de la monodromie. Des déploiements universels sont donnés pour toutes ces singularités. Dans l’article Confluence of singularities of non-linear differential equations via Borel–Laplace transformations on cherche des solutions bornées de systèmes paramétriques des équations non-linéaires de la variété centre de dimension 1 d’une singularité col-noeud déployée dans une famille de champs vectoriels complexes. En général, un système d’ÉDO analytiques avec une singularité double possède une unique solution formelle divergente au voisinage de la singularité, à laquelle on peut associer des vraies solutions sur certains secteurs dans le plan complexe en utilisant les transformations de Borel–Laplace. L’article montre comment généraliser cette méthode et déployer les solutions sectorielles. On construit des solutions de systèmes paramétriques, avec deux singularités régulières déployant une singularité irrégulière double, qui sont bornées sur des domaines «spirals» attachés aux deux points singuliers, et qui, à la limite, convergent vers une paire de solutions sectorielles couvrant un voisinage de la singularité confluente. La méthode apporte une description unifiée pour toutes les valeurs du paramètre.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Un algorithme permettant de discrétiser les équations aux dérivées partielles (EDP) tout en préservant leurs symétries de Lie est élaboré. Ceci est rendu possible grâce à l'utilisation de dérivées partielles discrètes se transformant comme les dérivées partielles continues sous l'action de groupes de Lie locaux. Dans les applications, beaucoup d'EDP sont invariantes sous l'action de transformations ponctuelles de Lie de dimension infinie qui font partie de ce que l'on désigne comme des pseudo-groupes de Lie. Afin d'étendre la méthode de discrétisation préservant les symétries à ces équations, une discrétisation des pseudo-groupes est proposée. Cette discrétisation a pour effet de transformer les symétries ponctuelles en symétries généralisées dans l'espace discret. Des schémas invariants sont ensuite créés pour un certain nombre d'EDP. Dans tous les cas, des tests numériques montrent que les schémas invariants approximent mieux leur équivalent continu que les différences finies standard.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Design equations are presented for calculating the resonance frequencies for a compact dual frequency arrow-shaped microstrip antenna. This provides a fast and simple way to predict the resonant frequencies of the antenna. The antenna is also analyzed using the IE3D simulation package. The theoretical predictions are found to be very close to the IE3D results and thus establish the validity of the design formulae

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis the author has presented qualitative studies of certain Kdv equations with variable coefficients. The well-known KdV equation is a model for waves propagating on the surface of shallow water of constant depth. This model is considered as fitting into waves reaching the shore. Renewed attempts have led to the derivation of KdV type equations in which the coefficients are not constants. Johnson's equation is one such equation. The researcher has used this model to study the interaction of waves. It has been found that three-wave interaction is possible, there is transfer of energy between the waves and the energy is not conserved during interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discovery of the soliton is considered to be one of the most significant events of the twentieth century. The term soliton refers to special kinds of waves that can propagate undistorted over long distances and remain unaffected even after collision with each other. Solitons have been studied extensively in many fields of physics. In the context of optical fibers, solitons are not only of fundamental interest but also have potential applications in the field of optical fiber communications. This thesis is devoted to the theoretical study of soliton pulse propagation through single mode optical fibers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Usually typical dynamical systems are non integrable. But few systems of practical interest are integrable. The soliton concept is a sophisticated mathematical construct based on the integrability of a class ol' nonlinear differential equations. An important feature in the clevelopment. of the theory of solitons and of complete integrability has been the interplay between mathematics and physics. Every integrable system has a lo11g list of special properties that hold for integrable equations and only for them. Actually there is no specific definition for integrability that is suitable for all cases. .There exist several integrable partial clillerential equations( pdes) which can be derived using physically meaningful asymptotic teclmiques from a very large class of pdes. It has been established that many 110nlinear wa.ve equations have solutions of the soliton type and the theory of solitons has found applications in many areas of science. Among these, well-known equations are Korteweg de-Vries(KdV), modified KclV, Nonlinear Schr6dinger(NLS), sine Gordon(SG) etc..These are completely integrable systems. Since a small change in the governing nonlinear prle may cause the destruction of the integrability of the system, it is interesting to study the effect of small perturbations in these equations. This is the motivation of the present work.