1000 resultados para Quantized functional algebras
Resumo:
Due to its three-dimensional folding pattern, the human neocortex; poses a challenge for accurate co-registration of grouped functional; brain imaging data. The present study addressed this problem by; employing three-dimensional continuum-mechanical image-warping; techniques to derive average anatomical representations for coregistration; of functional magnetic resonance brain imaging data; obtained from 10 male first-episode schizophrenia patients and 10 age-matched; male healthy volunteers while they performed a version of the; Tower of London task. This novel technique produced an equivalent; representation of blood oxygenation level dependent (BOLD) response; across hemispheres, cortical regions, and groups, respectively, when; compared to intensity average co-registration, using a deformable; Brodmann area atlas as anatomical reference. Somewhat closer; association of Brodmann area boundaries with primary visual and; auditory areas was evident using the gyral pattern average model.; Statistically-thresholded BOLD cluster data confirmed predominantly; bilateral prefrontal and parietal, right frontal and dorsolateral; prefrontal, and left occipital activation in healthy subjects, while; patients’ hemispheric dominance pattern was diminished or reversed,; particularly decreasing cortical BOLD response with increasing task; difficulty in the right superior temporal gyrus. Reduced regional gray; matter thickness correlated with reduced left-hemispheric prefrontal/; frontal and bilateral parietal BOLD activation in patients. This is the; first study demonstrating that reduction of regional gray matter in; first-episode schizophrenia patients is associated with impaired brain; function when performing the Tower of London task, and supports; previous findings of impaired executive attention and working memory; in schizophrenia.
Resumo:
This study was designed to identify the neural networks underlying automatic auditory deviance detection in 10 healthy subjects using functional magnetic resonance imaging. We measured blood oxygenation level-dependent contrasts derived from the comparison of blocks of stimuli presented as a series of standard tones (50 ms duration) alone versus blocks that contained rare duration-deviant tones (100 ms) that were interspersed among a series of frequent standard tones while subjects were watching a silent movie. Possible effects of scanner noise were assessed by a “no tone” condition. In line with previous positron emission tomography and EEG source modeling studies, we found temporal lobe and prefrontal cortical activation that was associated with auditory duration mismatch processing. Data were also analyzed employing an event-related hemodynamic response model, which confirmed activation in response to duration-deviant tones bilaterally in the superior temporal gyrus and prefrontally in the right inferior and middle frontal gyri. In line with previous electrophysiological reports, mismatch activation of these brain regions was significantly correlated with age. These findings suggest a close relationship of the event-related hemodynamic response pattern with the corresponding electrophysiological activity underlying the event-related “mismatch negativity” potential, a putative measure of auditory sensory memory.
Resumo:
Regional cerebral blood flow (rCBF) and blood oxygenation level-dependent (BOLD) contrasts represent different physiological measures of brain activation. The present study aimed to compare two functional brain imaging techniques (functional magnetic resonance imaging versus [15O] positron emission tomography) when using Tower of London (TOL) problems as the activation task. A categorical analysis (task versus baseline) revealed a significant BOLD increase bilaterally for the dorsolateral prefrontal and inferior parietal cortex and for the cerebellum. A parametric haemodynamic response model (or regression analysis) confirmed a task-difficulty-dependent increase of BOLD and rCBF for the cerebellum and the left dorsolateral prefrontal cortex. In line with previous studies, a task-difficulty-dependent increase of left-hemispheric rCBF was also detected for the premotor cortex, cingulate, precuneus, and globus pallidus. These results imply consistency across the two neuroimaging modalities, particularly for the assessment of prefrontal brain function when using a parametric TOL adaptation.
Resumo:
This research project evaluated the biomechanical and functional outcomes of patients following total knee replacement measured at 6 and 12 months following surgery. Using more objective measures, patients were examined to determine changes in biomechanical and neuromuscular function during performance of activities of daily living such as walking, stair climbing and turning. Adaptations in joint positioning and performance were identified and progressive improvements were made in some areas of locomotor function. The findings of the study provided important objective information to contribute to the design and evaluation of prostheses, new surgical and rehabilitation procedures and improved recovery of patients.
Resumo:
Scarring is a significant medical burden; financially to the health care system and physically and psychologically for patients. Importantly, there have been numerous case reports describing the occurrence of cancer in burn scars. Currently available therapies are not satisfactory due to their undesirable side-effects, complex delivery routes, requirements for long-term use and/or expense. Radix Arnebiae (Zi Cao), a perennial herb, has been clinically applied to treat burns and manage scars for thousands of years in Asia. Shikonin, an active component extracted from Radix Arnebiae, has been demonstrated to induce apoptosis in cancer cells. Apoptosis is an essential process during scar tissue remodelling. It was therefore hypothesized that Shikonin may induce apoptosis in scar-associated cells. This investigation presents the first detailed in vitro study examining the functional responses of scar-associated cells to Shikonin, and investigates the mechanisms underlying these responses. The data obtained suggests that Shikonin inhibits cell viability and proliferation and reduces detectable collagen in scar-derived fibroblasts. Further investigation revealed that Shikonin induces apoptosis in scar fibroblasts by differentially regulating the expression of caspase 3, Bcl-2, phospho-Erk1/2 and phospho-p38. In addition, Shikonin down-regulates the expression of collagen I, collagen III and alpha-smooth muscle actin genes hence attenuating collagen synthesis in scar-derived fibroblasts. In summary, it is demonstrated that Shikonin induces apoptosis and decreases collagen production in scar-associated fibroblasts and may therefore hold potential as a novel scar remediation therapy.
Resumo:
This research developed and applied an evaluative framework to analyse multiple scales of decision-making for environmental management planning. It is the first exploration of the sociological theory of structural-functionalism and its usefulness to support evidence based decision-making in a planning context. The framework was applied to analyse decision-making in Queensland's Cape York Peninsula and Wet Tropics regions.
Resumo:
Individuals with lower limb amputation fitted with an OPRA osseointegrated fixation are facing an extensive rehabilitation program including static load bearing exercises (LBE). The application of a suitable amount of stress stimulates osseointegration and prepares the bone to tolerate the forces and moments that will be incurred during activities of daily living (ADL. At present, the monitoring is typically carried out using a normal bathroom weighing scale. This scale provides information only on the magnitude of the vertical component of the applied force. The moment around the long axis of the fixation when the femur is perpendicular to the ground is not assessed and neither are the components of force and moment generated on the other two axes.
Resumo:
The conventional method of attachment of prosthesis involves a socket. A new method relying on osseointegrated fixation has emerged in the last decades. It has significant prosthetic benefits. Only a few studies demonstrated the biomechanical benefits. The ultimate aim of this study was to characterise the functional outcome of individuals with lower limb amputation fitted with osseointegrated fixation, which can be assess through temporal and spatial gait characteristics. The specific objective of this study was to present the key temporal and spatial gait characteristics of individuals with transfemoral amputation (TFA).
Resumo:
Multifunctional bioactive materials with the ability to stimulate osteogenesis and angiogenesis of stem cells play an important role in the regeneration of bone defects. However, how to develop such biomaterials remains a significant challenge. In this study, we prepared mesoporous silica nanospheres (MSNs) with uniform sphere size (∼90 nm) and mesopores (∼2.7 nm), which could release silicon ions (Si) to stimulate the osteogenic differentiation of human bone marrow stromal cells (hBMSCs) via activating their ALP activity, bone-related gene and protein (OCN, RUNX2 and OPN) expression. Hypoxia-inducing therapeutic drug, dimethyloxaloylglycine (DMOG), was effectively loaded in the mesopores of MSNs (D-MSNs). The sustained release of DMOG from D-MSNs could stabilize HIF-1α and further stimulated the angiogenic differentiation of hBMSCs as indicated by the enhanced VEGF secretion and protein expression. Our study revealed that D-MSNs could combine the stimulatory effect on both osteogenic and angiogenic activity of hBMSCs. The potential mechanism of D-MSN-stimulated osteogenesis and angiogenesis was further elucidated by the supplementation of cell culture medium with pure Si ions and DMOG. Considering the easy handling characteristics of nanospheres, the prepared D-MSNs may be applied in the forms of injectable spheres for minimally invasive surgery, or MSNs/polymer composite scaffolds for bone defect repair. The concept of delivering both stimulatory ions and functional drugs may offer a new strategy to construct a multifunctional biomaterial system for bone tissue regeneration.
Resumo:
Four silanes, trimethylchlorosilane (TMCS), dimethyldiethoxylsilane (DMDES), 3-aminopropyltriethoxysilane (APTES) and tetraethoxysilane (TEOS), were adopted to graft layered double hydroxides (LDH) via an induced hydrolysis silylation method (IHS). Fourier transform infrared spectra (FTIR) and 29Si MAS nuclear magnetic resonance spectra (29Si MAS NMR) indicated that APTES and TEOS can be grafted onto LDH surfaces via condensation with hydroxyl groups of LDH, while TMCS and DMDES could only be adsorbed on the LDH surface with a small quantity. A combination of X-ray diffraction patterns (XRD) and 29Si MAS NMR spectra showed that silanes were exclusively present in the external surface and had little influence on the long range order of LDH. The surfactant intercalation experiment indicated that the adsorbed and/or grafted silane could not fix the interlamellar spacing of the LDH. However, they will form crosslink between the particles and affect the further surfactant intercalation in the silylated samples. The replacement of water by ethanol in the tactoids and/or aggregations and the polysiloxane oligomers formed during silylation procedure can dramatically increase the value of BET surface area (SBET) and total pore volumes (Vp) of the products.
Resumo:
Objectives Self-regulation refers to the practice of using self-imposed restrictions to protect oneself from situations that are, or are perceived to be, unsafe. Within the driving context, self-regulation refers the compensatory practices that some older adults adopt to restrict their driving to situations in which they feel safe. However, the way in which demographic, functional, and psychosocial factors, and the interactions between these factors, influence older adults’ driving self-regulation is not well understood. Improving this understanding could lead to new ways of considering the mobility concerns faced by older drivers. Method A systematic review of the current literature was conducted to explore this issue. Twenty-nine empirical studies investigating the factors associated with older adults’ self-regulatory driving behaviors were examined. Results The review findings were used to construct the Multilevel Older Persons Transportation and Road Safety (MOTRS) model. The MOTRS model proposes that individual and environmental factors such as age, gender, and the availability of alternative transportation predict older adults’ practice of driving-related self-regulation. However, these variables influence self-regulation through psychosocial variables such as driving confidence, affective attitude, and instrumental attitude toward driving. Discussions The MOTRS model extends previous attempts to model older adults’ driving by focusing on a novel target, driving self-regulation, and by including a wider range of predictors identified on the basis of the systematic literature review. This focus enables consideration of broader mobility issues and may inform new strategies to support the mobility of older adults.
Resumo:
Uncorrected refractive error, including astigmatism, is a leading cause of reversible visual impairment. While the ability to perform vision-related daily activities is reduced when people are not optimally corrected, only limited research has investigated the impact of uncorrected astigmatism. Given the capacity to perform vision-related daily activities involves integration of a range of visual and cognitive cues, this research examined the impact of simulated astigmatism on visual tasks that also involved cognitive input. The research also examined whether the higher levels of complexity inherent in Chinese characters makes them more susceptible to the effects of astigmatism. The effects of different powers of astigmatism, as well as astigmatism at different axes were investigated in order to determine the minimum level of astigmatism that resulted in a decrement in visual performance.
Resumo:
Background The Spine Functional Index (SFI) is a patient reported outcome measure with sound clinimetric properties and clinical viability for the determination of whole-spine impairment. To date, no validated Turkish version is available. The purpose of this study is to cross-culturally adapted the SFI for Turkish-speaking patients (SFI-Tk) and determine the psychometric properties of reliability, validity and factor structure in a Turkish population with spine musculoskeletal disorders. Methods The SFI English version was culturally adapted and translated into Turkish using a double forward and backward method according to established guidelines. Patients (n = 285, cervical = l29, lumbar = 151, cervical and lumbar region = 5, 73% female, age 45 ± 1) with spine musculoskeletal disorders completed the SFI-Tk at baseline and after a seven day period for test-retest reliability. For criterion validity the Turkish version of the Functional Rating Index (FRI) was used plus the Neck Disability Index (NDI) for cervical patients and the Oswestry Disability Index (ODI) for back patients. Additional psychometric properties were determined for internal consistency (Chronbach’s α), criterion validity and factor structure. Results There was a high degree of internal consistency (α = 0.85, item range 0.80-0.88) and test-retest reliability (r = 0.93, item range = 0.75-0.95). The factor analysis demonstrated a one-factor solution explaining 24.2% of total variance. Criterion validity with the ODI was high (r = 0.71, p < 0.001) while the FRI and NDI were fair (r = 0.52 and r = 0.58, respectively). The SFI-Tk showed no missing responses with the ‘half-mark’ option used in 11.75% of total responses by 77.9% of participants. Measurement error from SEM and MDC90 were respectively 2.96% and 7.12%. Conclusions The SFI-Tk demonstrated a one-factor solution and is a reliable and valid instrument. The SFI-Tk consists of simple and easily understood wording and may be used to assess spine region musculoskeletal disorders in Turkish speaking patients.
Resumo:
Background Assessing hand injury is of great interest given the level of involvement of the hand with the environment. Knowing different assessment systems and their limitations generates new perspectives. The integration of digital systems (accelerometry and electromyography) as a tool to supplement functional assessment allows the clinician to know more about the motor component and its relation to movement. Therefore, the purpose of this study was the kinematic and electromyography analysis during functional hand movements. Method Ten subjects carried out six functional movements (terminal pinch, termino-lateral pinch, tripod pinch, power grip, extension grip and ball grip). Muscle activity (hand and forearm) was measured in real time using electromyograms, acquired with the Mega ME 6000, whilst acceleration was measured using the AcceleGlove. Results Electrical activity and acceleration variables were recorded simultaneously during the carrying out of the functional movements. The acceleration outcome variables were the modular vectors of each finger of the hand and the palm. In the electromyography, the main variables were normalized by the mean and by the maximum muscle activity of the thenar region, hypothenar, first interosseous dorsal, wrist flexors, carpal flexors and wrist extensors. Conclusions Knowing muscle behavior allows the clinician to take a more direct approach in the treatment. Based on the results, the tripod grip shows greater kinetic activity and the middle finger is the most relevant in this regard. Ball grip involves most muscle activity, with the thenar region playing a fundamental role in hand activity. Clinical relevance Relating muscle activation, movements, individual load and displacement offers the possibility to proceed with rehabilitation by individual component.