956 resultados para QCD vacuum replicas


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A-type zeolite membranes were successfully synthesized on tubular alpha-Al2O3 supports by secondary growth method with vacuum seeding In the seeding process, a thin, uniform and continuous seeding layer was closely attached to the support surface by the pressure difference between the two sides of the support wall. The effects of seed particle size, suspension concentration, coating pressure difference and coating time on the membrane and its pervaporation properties were investigated. The as-synthesized membranes were characterized by XRD and SEM. The quality of the membranes was evaluated by the pervaporation dehydration of 95 wt. % isopropanol/water mixture at 343 K. High quality A-type zeolite membranes can be reproducibly prepared by the secondary growth method with vacuum seeding under the conditions: seed particle size of 500-1200 nm, suspension concentration of 4-8 g/l, coating pressure difference of 0.0100-0.0250 MPa and coating time of 45-180 s. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mn2+-doped xBaO center dot 6Al(2)O(3) and BaMgAl10O17 phosphors were prepared by solid-state reaction. The investigation of vacuum ultraviolet (VUV) excitation spectra of these phosphors exhibits that 0.82BaO center dot 6Al(2)O(3):Mn2+ and BaMgAl10O17:Mn2+ have a stronger absorption than BaO center dot 6Al(2)O(3):Mn2+ at about 147 nm. The emission spectra under VUV excitation demonstrated that 0.82BaOBa center dot 6Al(2)O(3):Mn2+ and BaMgAl10O17:Mn2+ have a higher luminescent intensity than BaO center dot 6Al(2)O(3):Mn2+. The lifetime analysis indicates that they have similar decay times, indicating that 0.82BaOBa center dot 6Al(2)O(3):Mn2+ and BaMgAl10O17:Mn2+ can be used as luminescent materials for plasma display panels. We observed that the critical concentration of the Mn2+ ions by host excitation is different from that of Mn2+ direct excitation, revealing a different mechanism of energy transfer. The critical distance was calculated. A model was suggested to explain the process of the energy transfer from the host to the Mn2+ ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was irradiated by Co-60 gamma-rays (doses of 50, 100 and 200kGy) under vacuum. The thermal analysis of control and irradiated PHBV, under vacuum was carried out by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The tensile properties of control and irradiated PHBV were examined by using an Instron tensile testing machine. In the thermal degradation of control and irradiated PHBV, a one-step weight loss was observed. The derivative thermogravimetric curves of control and irradiated PHBV confirmed only one weight-loss step change. The onset degradation temperature (T-o) and the temperature of maximum weight-loss rate (T-p) of control and irradiated PHBV were in line with the heating rate (degreesC min(-1)). T-o and T-p of PHBV decreased with increasing radiation dose at the same heating rate. The DSC results showed that Co-60 gamma-radiation significantly affected the thermal properties of PHBV. With increasing radiation dose, the melting temperature (T-m) of PHBV shifted to a lower value, due to the decrease in crystal size. The tensile strength and fracture strain of the irradiated PHBV decreased, hence indicating an increased brittleness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submonolayer thin films of a three-ring bent-core (that is, banana-shaped) compound, m-bis(4-n-octyloxystyryl)benzene (m-OSB), were prepared by the vacuum-deposition method, and their morphologies, structures, and phase behavior were investigated by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The films have island shapes ranging from compact elliptic or circular patterns at low temperatures (below 40 degreesC) to branched patterns at high temperatures (above 60 degreesC). This shape evolution is contrary to the prediction based on the traditional diffusion-limited aggregation (DLA) theory. AFM observations revealed that two different mechanisms governed the film growth, in which the compact islands were formed via a dewetting-like behavior, while the branched islands diffusion-mediated. It is suggested m-OSB forms a two-dimensional, liquid crystal at the low-temperature substrate that is responsible for the unusual formation of compact islands. All of the monolayer islands are unstable and apt to transform to slender bilayer crystals at room temperature. This phase transition results from the peculiar molecular shape and packing of the bent-core molecules and is interpreted as escaping from macroscopic net polarization by the formation of an antiferroelectric alignment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ambipolar organic field-effect transistors (OFETs) are produced, based on organic heterojunctions fabricated by a two-step vacuum-deposition process. Copper phthalocyanine (CuPc) deposited at a high temperature (250 degrees C) acts as the first (p-type component) layer, and hexadecafluorophthalocyaninatocopper (F16CuPc) deposited at room temperature (25 degrees C) acts as the second (n-type component) layer. A heterojunction with an interpenetrating network is obtained as the active layer for the OFETs. These heterojunction devices display significant ambipolar charge transport with symmetric electron and hole mobilities of the order of 10(-4) cm(2) V-1 s(-1) in air. Conductive channels are at the interface between the F16CuPc and CuPc domains in the interpenetrating networks. Electrons are transported in the F16CuPc regions, and holes in the CuPc regions. The molecular arrangement in the heterojunction is well ordered, resulting in a balance of the two carrier densities responsible for the ambipolar electrical characteristics. The thin-film morphology of the organic heterojunction with its interpenetrating network structure can be controlled well by the vacuum-deposition process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vacuum ultraviolet excitation spectra of phosphors (La,Gd)PO4:RE3+ (RE = Eu or Tb) and X-ray photoelectron spectra of LaPO4 and GdPO4 are investigated. The vacuum ultraviolet excitation intensity of (La,Gd)PO4:RE3+ is enhanced with the increasing of Gd3+ content, which implies that Gd3+ plays an intermediate role in energy transfer from host absorption band to RE3+. When Gd3+ is doped into LaPO4:Eu, charge transfer band (CT band) begins to shift to higher energy region and the overlap degree of CT band and the host absorption band gets greater with more Gd3+ doped into LaPO4. These results suggest that the dopant (Gd3+) gives an important influence on energy transfer efficiency. The top of LaPO4 valance band is formed by the 2p level of O2-, whereas that of GdPO4 valance band is formed by the 2p level of O2- and the 4f level of Gd3+, showing the differences in band structures between LaPO4 and GdPO4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The morphology of films of isotactic polypropylene poly (3-dodecylthiophene) and iPP/P3DDT blend formed in electrostatic fields has been investigated by using scanning electron microscope. The experiment results show that the micro-crystal morphology of polymer films was strongly dependent on electrostatic fields. It was found that the effect of the electrostatic field led to the formation of dendrite crystals aligned in the field direction, and some branches of P3DDT ruptured. However, the micro-crystals in these films grew into spherulites without electrostatic field,and have no crystal orientation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most lead bullion is refined by pyrometallurgical methods - this involves a serics of processes that remove the antimony (softening) silver (Parkes process), zinc (vacuum dezincing) and if need be, bismuth (Betterton-Kroll process). The first step, softening, removes the antimony, arsenic and tin by air oxidation in a furnace or by the Harris process. Next, in the Parkes process, zinc is added to the melt to remove the silver and gold. Insoluble zinc, silver and gold compounds are skimmed off from the melt surface. Excess zinc added during desilvering is removed from lead bullion using one of ghree methods: * Vacuum dezincing; * Chlorine dezincing; or * Harris dezincing. The present study concentrates on the Vacuum dezincing process for lead refining. The main aims of the research are to develop mathematical model(s), using Computational Fluid Dyanmics (CFD) a Surface Averaged Model (SAM), to predict the process behaviour under various operating conditions, thus providing detailed information of the process - insight into its reaction to changes of key operating parameters. Finally, the model will be used to optimise the process in terms of initial feed concentration, temperature, vacuum height cooling rate, etc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Removing zinc by distillation can leave the lead bullion virtually free of zinc and also produces pure zinc crystals. Batch distillation is considered in a hemispherical kettle with water-cooled lid, under high vacuum (50 Pa or less). Sufficient zinc concentration at the evaporating surface is achieved by means of a mechanical stirrer. The numerical model is based on the multiphysics simulation package PHYSICA. The fluid flow module of the code is used to simulate the action of the stirring impeller and to determine the temperature and concentration fields throughout the liquid volume including the evaporating surface. The rate of zinc evaporation and condensation is then modelled using Langmuir’s equations. Diffusion of the zinc vapour through the residual air in the vacuum gap is also taken into account. Computed results show that the mixing is sufficient and the rate-limiting step of the process is the surface evaporation driven by the difference of the equilibrium vapour pressure and the actual partial pressure of zinc vapour. However, at higher zinc concentrations, the heat transfer through the growing zinc crystal crust towards the cold steel lid may become the limiting factor because the crystallization front may reach the melting point. The computational model can be very useful in optimising the process within its safe limits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vacuum Arc Remelting (VAR) is the accepted method for producing homogeneous, fine microstructures that are free of inclusions required for rotating grade applications. However, as ingot sizes are increasing INCONEL 718 becomes increasingly susceptible to defects such as freckles, tree rings, and white spots increases for large diameter billets. Therefore, predictive models of these defects are required to allow optimization of process parameters. In this paper, a multiscale and multi-physics model is presented to predict the development of microstructures in the VAR ingot during solidification. At the microscale, a combined stochastic nucleation approach and finite difference solution of the solute diffusion is applied in the semi-solid zone of the VAR ingot. The micromodel is coupled with a solution of the macroscale heat transfer, fluid flow and electromagnetism in the VAR process through the temperature, pressure and fluid flow fields. The main objective of this study is to achieve a better understanding of the formation of the defects in VAR by quantifying the influence of VAR processing parameters on grain nucleation and dendrite growth. In particular, the effect of different ingot growth velocities on the microstructure formation was investigated. It was found that reducing the velocity produces significantly more coarse grains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vacuum arc remelting (VAR) aims at production of high quality, segregation-free alloys. The quality of the produced ingots depends on the operating conditions which could be monitored and analyzed using numerical modelling. The remelting process uniformity is controlled by critical medium scale time variations of the order 1-100 s, which are physically initiated by the droplet detachment and the large scale arc motion at the top of liquid pool [1,2]. The newly developed numerical modelling tools are addressing the 3-dimensional magnetohydrodynamic and thermal behaviour in the liquid zone and the adjacent ingot, electrode and crucible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multiscale model for the Vacuum Arc Remelting process (VAR) was developed to simulate dendritic microstructures during solidification and investigate the onset of freckle formation. On the macroscale, a 3D multi-physics model of VAR was used to study complex physical phenomena, including liquid metal flow with turbulence, heat transfer, and magnetohydrodynamics. The results showed that unsteady fluid flow in the liquid pool caused significant thermal perturbation at the solidification front. These results were coupled into a micromodel to simulate dendritic growth controlled by solute diffusion, including local remelting. The changes in Rayleigh number as the microstructure remelts was quantified to provide an indicator of when fluid flow channels (i.e. freckles) will initiate in the mushy zone. By examining the simulated microstructures, it was found that the Rayleigh number increased more than 300 times during remelting, which suggests that thermal perturbation could be responsible for the onset of freckle formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Newly developed numerical modelling tools are described, which address the 3-dimensional (3D) time-dependent magnetohydrodynamic and thermal behaviour in the liquid pool zone in the adjacent ingot, electrode and crucible. The melting electrode film flow and the droplet detachment initiation are simulated separately by an axisymmetric transient model.