601 resultados para Pyruvate-ferredoxin Oxidoreductase
Resumo:
Astrocytes have recently become a major center of interest in neurochemistry with the discoveries on their major role in brain energy metabolism. An interesting way to probe this glial contribution is given by in vivo (13) C NMR spectroscopy coupled with the infusion labeled glial-specific substrate, such as acetate. In this study, we infused alpha-chloralose anesthetized rats with [2-(13) C]acetate and followed the dynamics of the fractional enrichment (FE) in the positions C4 and C3 of glutamate and glutamine with high sensitivity, using (1) H-[(13) C] magnetic resonance spectroscopy (MRS) at 14.1T. Applying a two-compartment mathematical model to the measured time courses yielded a glial tricarboxylic acid (TCA) cycle rate (Vg ) of 0.27 ± 0.02 μmol/g/min and a glutamatergic neurotransmission rate (VNT ) of 0.15 ± 0.01 μmol/g/min. Glial oxidative ATP metabolism thus accounts for 38% of total oxidative metabolism measured by NMR. Pyruvate carboxylase (VPC ) was 0.09 ± 0.01 μmol/g/min, corresponding to 37% of the glial glutamine synthesis rate. The glial and neuronal transmitochondrial fluxes (Vx (g) and Vx (n) ) were of the same order of magnitude as the respective TCA cycle fluxes. In addition, we estimated a glial glutamate pool size of 0.6 ± 0.1 μmol/g. The effect of spectral data quality on the fluxes estimates was analyzed by Monte Carlo simulations. In this (13) C-acetate labeling study, we propose a refined two-compartment analysis of brain energy metabolism based on (13) C turnover curves of acetate, glutamate and glutamine measured with state of the art in vivo dynamic MRS at high magnetic field in rats, enabling a deeper understanding of the specific role of glial cells in brain oxidative metabolism. In addition, the robustness of the metabolic fluxes determination relative to MRS data quality was carefully studied.
Resumo:
BACKGROUND Temporomandibular disorder (TMD) is a multifactorial syndrome related to a critical period of human life. TMD has been associated with psychological dysfunctions, oxidative state and sexual dimorphism with coincidental occurrence along the pubertal development. In this work we study the association between TMD and genetic polymorphisms of folate metabolism, neurotransmission, oxidative and hormonal metabolism. Folate metabolism, which depends on genes variations and diet, is directly involved in genetic and epigenetic variations that can influence the changes of last growing period of development in human and the appearance of the TMD. METHODS A case-control study was designed to evaluate the impact of genetic polymorphisms above described on TMD. A total of 229 individuals (69% women) were included at the study; 86 were patients with TMD and 143 were healthy control subjects. Subjects underwent to a clinical examination following the guidelines by the Research Diagnostic Criteria for Temporomandibular Disorders (RDC/TMD). Genotyping of 20 Single Nucleotide Polymorphisms (SNPs), divided in two groups, was performed by multiplex minisequencing preceded by multiplex PCR. Other seven genetic polymorphisms different from SNPs (deletions, insertions, tandem repeat, null genotype) were achieved by a multiplex-PCR. A chi-square test was performed to determine the differences in genotype and allelic frequencies between TMD patients and healthy subjects. To estimate TMD risk, in those polymorphisms that shown significant differences, odds ratio (OR) with a 95% of confidence interval were calculated. RESULTS Six of the polymorphisms showed statistical associations with TMD. Four of them are related to enzymes of folates metabolism: Allele G of Serine Hydoxymethyltransferase 1 (SHMT1) rs1979277 (OR = 3.99; 95%CI 1.72, 9.25; p = 0.002), allele G of SHMT1 rs638416 (OR = 2.80; 95%CI 1.51, 5.21; p = 0.013), allele T of Methylentetrahydrofolate Dehydrogenase (MTHFD) rs2236225 (OR = 3.09; 95%CI 1.27, 7.50; p = 0.016) and allele A of Methionine Synthase Reductase (MTRR) rs1801394 (OR = 2.35; 95CI 1.10, 5.00; p = 0.037). An inflammatory oxidative stress enzyme, Gluthatione S-Tranferase Mu-1(GSTM1), null allele (OR = 2.21; 95%CI 1.24, 4.36; p = 0.030) and a neurotransmission receptor, Dopamine Receptor D4 (DRD4), long allele of 48 bp-repeat (OR = 3.62; 95%CI 0.76, 17.26; p = 0.161). CONCLUSIONS Some genetic polymorphisms related to folates metabolism, inflammatory oxidative stress, and neurotransmission responses to pain, has been significantly associated to TMD syndrome.
Resumo:
The schistosomal parasite plays a critical role in the development of malignant lesions in different organs. The pathogenesis of cancer is currently under intense investigation to identify reliable prognostic indices for disease detection. The objective of this paper is to evaluate certain biochemical parameters as diagnostic tools to efficiently differentiate between colonic carcinoma and colonic carcinoma associated with schistosomal infection among Egyptian patients. The parameters under investigation are interleukin 2 (IL-2), tumour necrosis factor alpha (TNF-α), carcinoembryonic antigen (CEA) levels, tissue telomerase, pyruvate kinase (PK), glucose-6-phosphate dehydrogenase (G-6-PD) and lactate dehydrogenase (LDH) enzyme activities. The results revealed a significant elevation in the level of the tumour markers IL-2, TNF-α and CEA as well as the activities of LDH, telomerase and G-6-PD among non-bilharzial and bilharzial colonic cancer groups, with a more potent effect in bilharzial infection-associated colonic cancer. A significant inhibition in PK activity was recorded in the same manner as compared to normal tissues. The efficacy of this biomarker was also evaluated through detecting sensitivity, specificity, negative and positive predictive values. In conclusion, schistosomal colonic carcinoma patients displayed more drastic changes in all parameters under investigation. The combination of the selected parameters succeeded in serving as biomarkers to differentiate between the two malignant types.
Resumo:
Starting from a cohort of 50 NADH-oxidoreductase (complex I) deficient patients, we carried out the systematic sequence analysis of all mitochondrially encoded complex I subunits (ND1 to ND6 and ND4L) in affected tissues. This approach yielded the unexpectedly high rate of 20% mutation identification in our series. Recurrent heteroplasmic mutations included two hitherto unreported (T10158C and T14487C) and three previously reported mutations (T10191C, T12706C and A13514G) in children with Leigh or Leigh-like encephalopathy. The recurrent mutations consistently involved T-->C transitions (p<10(-4)). This study supports the view that an efficient molecular screening should be based on an accurate identification of respiratory chain enzyme deficiency.
Resumo:
Enolase is the eighth enzyme in the glycolytic pathway, a reaction that generates ATP from phosphoenol pyruvate in cytosolic compartments. Enolase is essential, especially for organisms devoid of the Krebs cycle that depend solely on glycolysis for energy. Interestingly, enolase appears to serve a separate function in some organisms, in that it is also exported to the cell surface via a poorly understood mechanism. In these organisms, surface enolase assists in the invasion of their host cells by binding plasminogen, an abundant plasma protease precursor. Binding is mediated by the interaction between a lysine motif of enolase with Kringle domains of plasminogen. The bound plasminogen is then cleaved by specific proteases to generate active plasmin. Plasmin is a potent serine protease that is thought to function in the degradation of the extracellular matrix surrounding the targeted host cell, thereby facilitating pathogen invasion. Recent work revealed that the malaria parasite Plasmodium also expresses surface enolase, and that this feature may be essential for completion of its life cycle. The therapeutic potential of targeting surface enolases of pathogens is discussed.
Resumo:
Anti-silencing factor 1 (ASF1) is a histone chaperone that contributes to the histone deposition during nucleosome assembly in newly replicated DNA. It is involved in chromatin disassembly, transcription activation and in the cellular response to DNA damage. In Leishmania major the ASF1 gene (LmASF1) is located in chromosome 20 and codes for a protein showing 67% of identity with the Trypanosoma brucei TbASF1a. Compared to orthologous proteins, LmASF1 conserves the main residues relevant for its various biological functions. To study ASF1 in Leishmania we generated a mutant overexpressing LmASF1 in L. major. We observed that the excess of LmASF1 impaired promastigotes growth rates and had no impact on cell cycle progress. Differently from yeast, ASF1 overproduction in Leishmania did not affect expression levels of genes located on telomeres, but led to an upregulation of proteins involved in chromatin remodelling and physiological stress, such as heat shock proteins, oxidoreductase activity and proteolysis. In addition, we observed that LmASF1 mutant is more susceptible to the DNA damaging agent, methyl methane sulphonate, than the control line. Therefore, our study suggests that ASF1 from Leishmania pertains to the chromatin remodelling machinery of the parasite and acts on its response to DNA damage.
Resumo:
La tècnica de la microdiàlisis cerebral (MDC) és un instrument que proporciona informació rellevant en la monitorització del metabolisme cerebral en els pacients neurocrítics. El lactat i l’índex lactat-piruvat (ILP) són dos marcadors utilitzats per a la detecció de la hipòxia cerebral en pacients que han patit un traumatisme cranioencefàlic (TCE). Aquests dos marcadors poden estar anormalment elevats en circumstàncies que no cursen amb hipòxia tissular. Per una altra banda la recent aparició dels catèters de MDC amb porus de major mida denominats d’”alta resolució”, permet ampliar el rang de molècules que es poden detectar en el dialitzat. Objectius: 1) descriure les característiques del metabolisme energètic cerebral que s’observa en la fase aguda dels pacients que han patit un TCE en base als dos indicadors del metabolisme anaeròbic: lactat i ILP, i 2) determinar la recuperació relativa (RR) de les molècules implicades en la resposta neuroinflamatòria: de IL-1β, IL- 6, IL-8 i IL-10. Material i mètodes: Es van seleccionar 46 pacients d’una cohort de pacients amb TCE moderat o greu ingressats a la Unitat de Cures Intensives de l’Hospital Universitari de la Vall d’Hebron i monitoritzats amb MDC. Es van analitzar els nivells de lactat i ILP i es va correlacionar amb els nivells de PtiO2. Es van realitzar experiments in vitro per estudiar la recuperació de les membranes de 100 KDa per tal de poder interpretar posteriorment els nivells reals de les molècules estudiades en l’espai extracel•lular del teixit cerebral. Resultats: La concordança entre el lactat i l’índex LP per a determinar episodis de disfunció metabòlica va ser dèbil (índex de kappa = 0,36, IC 95%: 0,34-0,39). Més del 80% dels casos en què el lactat i l’índex LP es trobaven incrementats, els valors de la PtiO2 es van trobar dins els rangs de normalitat (PtiO2&15mmHg). La recuperació de les citoquines a través de la membrana de microdiàlisis va ser menor de l’esperat tenint en compte la mida dels porus de la membrana. Conclusions: el lactat i l’índex LP elevats va ser una troballa freqüent després d’un TCE i no es va relacionar, en la majoria de casos, amb episodis d’hipòxia tissular. Per un altra part la mida del porus de la membrana no és l’únic paràmetre indicador de la RR de macromolècules.
Resumo:
Summary of the thesis Glucose has been considered the major, if not the exclusive, energy substrate for the brain. But under certain conditions other substrates, namely monocarboxylates (lactate, pyruvate, and ketone bodies), can contribute significantly to satisfy brain energy demands. These monocarboxylates need to be transported across the blood brain barrier as well as out of astrocytes into the extracellular space and taken up into neurons. It has been shown that monocarboxylates are transported by a family of proton-linked transporters called monocarboxylate transporters (MCTs). In the central nervous system, MCT2 is the predominant neuronal form and little is known about the regulation of its expression. The neurotransmitter noradrenaline (NA) was shown previously to enhance the expression of MCT2 in cultured cortical neurons via a translational mechanism. Here, we demonstrate that two other substances, namely, insulin and IGF-1 enhance MCT2 protein expression in cultured mouse cortical neurons in a time- and concentrationdependent manner without affecting MCT2 mRNA levels. This result confirmed that MCT2 protein expression is translationally regulated and extend the observation to different types of neuroactive substances. Then we sought to determine by which signaling pathway(s) NA, insulin and IGF-1 can induce MCT2 protein expression. First, we observed by Western blot that all three substances cause activation of the MAP kinase ERK as well as the kinase Akt via their phosphorylation. Moreover, the mTOR/S6K pathway which is known to play an important role in translation initiation regulation was also strongly stimulated by all three substances. Second, we sought to determine the implication of these signaling pathways on the NA-, insulin- and IGF-1-induced enhancement of MCT2 protein expression and used specific inhibitors of these signaling pathways. We observed that the Pia kinase and mTOR inhibitors LY294002 and rapamycin respectively, strongly prevent the enhancement. of MCT2 expression caused by either NA, insulin ar IGF-1. In contrast, the MEK inhibitor PD98059 and the p38 MAP kinase inhibitor SB202190 had only a slight effect on the enhancement of MCT2 expression in all three cases. These results suggest that NA, insulin and IGF-1 regulate MCT2 protein expression by a common mechanism most likely involving the Akt/PKB pathway and translational activation via mTOR. In conclusion, considering the roles of NA, insulin and IGF-1 in synaptic plasticity, the tight translational regulation of MCT2 expression by these substances may represent a common mechanism through which supply of potentiated synapses with nonglucose energy substrates can be adapted to the level of activity. Résumé du travail de thèse Le glucose représente le substrat énergétique majeur pour le cerveau. Cependant, dans certaines conditions physiologiques ou pathologiques, le cerveau a la capacité d'utiliser des substrats énergétiques appartenant à la classe des monocarboxylates (lactate, pyruvate et corps cétoniques) afin de satisfaire ses besoins énergétiques. Ces monocarboxylates doivent être transportés à travers la barrière hématoencéphalique mais aussi hors des astrocytes vers l'espace extracellulaire puis re-captés par les neurones. Leur transport est assuré par une famille de transporteurs spécifiques, protons-dépendants, appelés transporteurs aux monocarboxylates (MCTs). Dans le système nerveux central, les neurones expriment principalement l'isoforme MCT2 mais peu d'informations sont disponibles concernant la régulation de son expression. Il a été montré que le neurotransmetteur noradrénaline (NA) augmente l'expression de MCT2 dans les cultures de neurones corticaux de souris par le biais d'un mécanisme de régulation traductionnel. La présente étude nous a permis de démontrer que deux autres substances, l'insuline et 17GF-1, induisent une augmentation de la protéine MCT2 dans ces mêmes cultures selon un décours temporel et une gamme de concentrations particulière. Etonnamment, aucun changement n'a été observé concernant les niveaux d'ARNm de MCT2. Ce résultat .confirme que la protéine MCT2 est régulée de manière traductionnelle et révèle que différentes substances neuro-actives peuvent réguler l'expression de MCT2. Compte tenu de ces observations, nous avons voulu déterminer par quelle(s) voie(s) de signalisation la NA, l'insuline et l'IGF-1 exercent leur effet sur l'expression de MCT2. Dans un premier temps, nous avons pu observer par Western blot que ces trois substances activent la MAP kinase ERK ainsi que la kinase Akt via leur phasphorylation. De plus, la voie mTOR/S6K, connue pour son implication dans la régulation de l'initiation de la traduction est aussi fortement activée par ces trois substances. Dans un second temps, nous avons voulu déterminer I implication de chacune de ces voies de signalisation dans l'augmentation de l'expression de la protéine MCT2 observée après stimulation à la NA, à l'insuline et à l'IGF-1. Pour ce faire, nous avons utilisé des inhibiteurs spécifiques de chacune de ces voies. (Vous avons observé que les inhibiteurs des voies PI3 kinase et mTOR (LY294002 et rapamycin respectivement), prévenaient fortement l'augmentation de l'expression de MCT2 induite par la NA, l'insuline ou (IGF-1. A l'inverse, les inhibitions de la MAP kinase .kinase MEK ainsi que de la MAP kinase p38 (par l'utilisation des inhibiteurs spécifiques PD98059 et SB202190 respectivement) n'ont eu qu'un léger effet dans ces mêmes conditions. Ces résultats suggèrent que la NA, 'l'insuline et I~GF-1 régulent l'expression de la protéine MCT2 par un mécanisme commun impliquant probablement la voie Akt/PKB et l'activation de la traduction via mTOR. En conclusion, considérant l'implication de la NA, de l'insuline et de I`IGF-1 dans la plasticité synaptique, le contrôle traductionnel étroit exercé par ces substances sur l'expression de MCT2 pourrait être un moyen d'alimenter en substrats énergétiques autres que le glucose les synapses activées et également d'adapter l'approvisionnement en substrats énergétiques au niveau d'activité. Résumé « grand public » Le cerveau est un organe qui réalise des tâches complexes nécessitant un apport important en énergie. La principale source d'énergie du cerveau est le glucose. Bien que le cerveau ne représente que 2% de la masse corporelle, il consomme à lui seul plus de 25% du glucose et 20% de l'oxygène provenant de la circulation sanguine. La nécessité d'un tel apport en énergie réside dans la nature -même du fonctionnement des milliards de neurones qui utilisent des signaux électriques et chimiques pour communiquer entre eux. Hormis l'utilisation massive du glucose comme source d'énergie, le cerveau est capable de consommer d'autres substrats énergétiques dans certaines conditions physiologiques ou pathologiques. Les monocarboxylates (lactate, pyruvate et corps cétoniques) font partie de ces autres sources d'énergie. Contrairement au glucose, les monocarboxylates ne diffusent pas facilement de la circulation sanguine vers les neurones. Afin de pouvoir être consommés par les neurones, ils doivent être transportés par un système adapté. Ce sont des transporteurs appelés transporteurs aux monocarboxylates ou MCT qui permettent le passage de ces substrats énergétiques du sang vers les neurones. Le but de ce travail de thèse a été de comprendre comment est régulée l'expression de MCT2, l'un de ces transporteurs exprimé spécifiquement à la surface des neurones. Cette étude nous a permis de mettre en évidence que le neurotransmetteur noradrénaline ainsi que les hormones insuline et IGF-1 (insulinlike growth factor-1) sont capables d'induire une augmentation d'expression de MCT2 à la surface des neurones en culture. Nous avons ensuite voulu déterminer par quels mécanismes de signalisation ces substances agissent sur l'expression de MCT2. Nous avons pu observer que la surexpression de la protéine MCT2 est due à une augmentation d'activité traductionnelle (la traduction étant une des étapes qui permet la synthèse des protéines) induite par le biais d'une voie de signalisation particulière. En conclusion, lorsque la noradrénaline, l'insuline ou 17GF-1 agissent sur les neurones, la traduction de la protéine MCT2 est activée et on observe une augmentation de l'expression de MCT2. Ce mécanisme pourrait permettre d'augmenter l'apport énergétique au niveau des neurones en augmentant le nombre de transporteurs pour les substrats énergétiques que sont les monocarboxylates. D'un point de vue physiologique, cette régulation d'expression pourrait jouer un rôle primordial dans des situations d'apprentissage et de mémorisation. Sur le plan pathologique, cela pourrait permettre de prévenir les dommages causes aux neurones dans certains cas d'atteintes cérébrales.
Resumo:
Phytomonas serpens are flagellates in the family Trypanosomatidae that parasitise the tomato plant (Solanum lycopersicum L.), which results in fruits with low commercial value. The tomato glycoalkaloid tomatine and its aglycone tomatidine inhibit the growth of P. serpens in axenic cultures. Tomatine, like many other saponins, induces permeabilisation of the cell membrane and a loss of cell content, including the cytosolic enzyme pyruvate kinase. In contrast, tomatidine does not cause permeabilisation of membranes, but instead provokes morphological changes, including vacuolisation. Phytomonas treated with tomatidine show an increased accumulation of labelled neutral lipids (BODYPY-palmitic), a notable decrease in the amount of C24-alkylated sterols and an increase in zymosterol content. These results are consistent with the inhibition of 24-sterol methyltransferase (SMT), which is an important enzyme that is responsible for the methylation of sterols at the 24 position. We propose that the main target of tomatidine is the sterols biosynthetic pathway, specifically, inhibition of the 24-SMT. Altogether, the results obtained in the present paper suggest a more general effect of alkaloids in trypanosomatids, which opens potential therapeutic possibilities for the treatment of the diseases caused by these pathogens.
Resumo:
Trypanosoma evansi, which causes surra, is descended from Trypanosoma brucei brucei, which causes nagana. Although both parasites are presumed to be metabolically similar, insufficient knowledge of T. evansiprecludes a full comparison. Herein, we provide the first report on the subcellular localisation of the glycolytic enzymes in T. evansi, which is a alike to that of the bloodstream form (BSF) of T. b.brucei: (i) fructose-bisphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hexokinase, phosphofructokinase, glucose-6-phosphate isomerase, phosphoglycerate kinase, triosephosphate isomerase (glycolytic enzymes) and glycerol-3-phosphate dehydrogenase (a glycolysis-auxiliary enzyme) in glycosomes, (ii) enolase, phosphoglycerate mutase, pyruvate kinase (glycolytic enzymes) and a GAPDH isoenzyme in the cytosol, (iii) malate dehydrogenase in cytosol and (iv) glucose-6-phosphate dehydrogenase in both glycosomes and the cytosol. Specific enzymatic activities also suggest that T. evansiis alike to the BSF of T. b. bruceiin glycolytic flux, which is much faster than the pentose phosphate pathway flux, and in the involvement of cytosolic GAPDH in the NAD+/NADH balance. These similarities were expected based on the close phylogenetic relationship of both parasites.
Resumo:
Type 2 diabetes has been related to a decrease of mitochondrial DNA (mtDNA) content. In this study, we show increased expression of the peroxisome proliferator-activated receptor-alpha (PPARalpha) and its target genes involved in fatty acid metabolism in skeletal muscle of Zucker Diabetic Fatty (ZDF) (fa/fa) rats. In contrast, the mRNA levels of genes involved in glucose transport and utilization (GLUT4 and phosphofructokinase) were decreased, whereas the expression of pyruvate dehydrogenase kinase 4 (PDK-4), which suppresses glucose oxidation, was increased. The shift from glucose to fatty acids as the source of energy in skeletal muscle of ZDF rats was accompanied by a reduction of subunit 1 of complex I (NADH dehydrogenase subunit 1, ND1) and subunit II of complex IV (cytochrome c oxidase II, COII), two genes of the electronic transport chain encoded by mtDNA. The transcript levels of PPARgamma Coactivator 1 (PGC-1) showed a significant reduction. Treatment with troglitazone (30 mg/kg/day) for 15 days reduced insulin values and reversed the increase in PDK-4 mRNA levels, suggesting improved insulin sensitivity. In addition, troglitazone treatment restored ND1 and PGC-1 expression in skeletal muscle. These results suggest that troglitazone may avoid mitochondrial metabolic derangement during the development of diabetes mellitus 2 in skeletal muscle.
Resumo:
PURPOSE: Experimental evidence suggests that lactate is neuroprotective after acute brain injury; however, data in humans are lacking. We examined whether exogenous lactate supplementation improves cerebral energy metabolism in humans with traumatic brain injury (TBI). METHODS: We prospectively studied 15 consecutive patients with severe TBI monitored with cerebral microdialysis (CMD), brain tissue PO2 (PbtO2), and intracranial pressure (ICP). Intervention consisted of a 3-h intravenous infusion of hypertonic sodium lactate (aiming to increase systemic lactate to ca. 5 mmol/L), administered in the early phase following TBI. We examined the effect of sodium lactate on neurochemistry (CMD lactate, pyruvate, glucose, and glutamate), PbtO2, and ICP. RESULTS: Treatment was started on average 33 ± 16 h after TBI. A mixed-effects multilevel regression model revealed that sodium lactate therapy was associated with a significant increase in CMD concentrations of lactate [coefficient 0.47 mmol/L, 95% confidence interval (CI) 0.31-0.63 mmol/L], pyruvate [13.1 (8.78-17.4) μmol/L], and glucose [0.1 (0.04-0.16) mmol/L; all p < 0.01]. A concomitant reduction of CMD glutamate [-0.95 (-1.94 to 0.06) mmol/L, p = 0.06] and ICP [-0.86 (-1.47 to -0.24) mmHg, p < 0.01] was also observed. CONCLUSIONS: Exogenous supplemental lactate can be utilized aerobically as a preferential energy substrate by the injured human brain, with sparing of cerebral glucose. Increased availability of cerebral extracellular pyruvate and glucose, coupled with a reduction of brain glutamate and ICP, suggests that hypertonic lactate therapy has beneficial cerebral metabolic and hemodynamic effects after TBI.
Resumo:
Hepatitis C virus (HCV) infection induces a state of oxidative stress by affecting mitochondrial-respiratory-chain activity. By using cell lines inducibly expressing different HCV constructs, we showed previously that viral-protein expression leads to severe impairment of mitochondrial oxidative phosphorylation and to major reliance on nonoxidative glucose metabolism. However, the bioenergetic competence of the induced cells was not compromised, indicating an efficient prosurvival adaptive response. Here, we show that HCV protein expression activates hypoxia-inducible factor 1 (HIF-1) by normoxic stabilization of its alpha subunit. In consequence, expression of HIF-controlled genes, including those coding for glycolytic enzymes, was significantly upregulated. Similar expression of HIF-controlled genes was observed in cell lines inducibly expressing subgenomic HCV constructs encoding either structural or nonstructural viral proteins. Stabilization and transcriptional activation of HIF-1alpha was confirmed in Huh-7.5 cells harboring cell culture-derived infectious HCV and in liver biopsy specimens from patients with chronic hepatitis C. The HCV-related HIF-1alpha stabilization was insensitive to antioxidant treatment. Mimicking an impairment of mitochondrial oxidative phosphorylation by treatment of inducible cell lines with oligomycin resulted in stabilization of HIF-1alpha. Similar results were obtained by treatment with pyruvate, indicating that accumulation of intermediate metabolites is sufficient to stabilize HIF-1alpha. These observations provide new insights into the pathogenesis of chronic hepatitis C and, possibly, the HCV-related development of hepatocellular carcinoma.
Resumo:
A methotrexate-containing medium for the detection of beta-hemolytic group B streptococci from clinical specimens on the basis of detection of pigment is described. The medium contained peptone, starch, serum, MgSO4, glucose, pyruvate, methotrexate (as pigment enhancer), phosphate-morpholine-propanesulfonic acid buffer, and selective agents. The recovery of beta-hemolytic group B streptococci was comparable to that obtained with selective broth.
Resumo:
Hyperlactatemia is associated with an ominous prognosis in critical illness and must be rapidly detected. Lactate is produced by glycolysis through reduction of pyruvate, itself oxidized in the mitochondria. It is transported to the liver and converted to glucose through gluconeogenesis (Cori's cycle). Hyperlactatemia can result from excessive production or reduced clearance. Excess production can occur in aerobic conditions, following an increase in pyruvate generation, or in anaerobic conditions, due to impaired pyruvate oxidation. Reduced lactate clearance occurs as a result of liver hypoperfusion or hepatic failure. Lactate/pyruvate ratio, as well as the concomitant existence of metabolic acidosis (lactic acidosis), help distinguish the different mechanisms leading to hyperlactatemia, which are reviewed in detail in this article.