1000 resultados para Programa Nuclear
Resumo:
Nuclear fluorescence in keratinocytes is an occasional phenomenon, often present in autoimmune diseases, especially in connective-tissue disease (CTD); however, its clinical significance remains unclear. To investigate the profile of patients with positive nuclear staining on direct immunofluorescence (DIF) of skin samples. A retrospective analysis of 28 patient records from our immunodermatology laboratory was performed between May 2003 and June 2006. Inclusion criteria were the presence of autoantibodies (IgG, IgA or IgM) or complement (C3) binding keratinocyte nuclei on DIF. The most prevalent diseases related to the nuclear keratinocyte DIF staining were systemic lupus erythematosus (n = 9), mixed CTD (n = 3), overlap syndrome (n = 3), Sjogren`s syndrome (n = 1), and CREST (calcinosis, Raynaud`s phenomenon, oesophageal dysmotility, sclerodactyly and telangiectasia) syndrome (n = 1). Serum antinuclear antibody (ANA) was positive in 20 of 28 patients, with titres varying from 1 : 160 to 1 : 1280. Of the 20 patients with positive anti-nuclear antibodies (ANA), 17 were positive for anti-extractable nuclear antigen antibodies, 12 had anti-SSA/Ro, 11 had anti-SSB/La and 8 had anti-ribonucleoprotein. Eight patients were negative for ANA. Positive predictive value of in vivo ANA for systemic CTDs was 75%. The present data suggest that in vivo ANA evaluation is an additional and feasible auxiliary tool for diagnosing CTDs.
Resumo:
Dendritic cells (DC) are potent APCs that enter resting tissues as precursors and, after Ag exposure, differentiate and migrate to draining lymph nodes. The phenotype of RelB knockout mice implicates this member of the NF kappa B/Rel family in DC differentiation. To further elucidate the role of RelB in DC differentiation, mRNA, intracellular protein expression, and DNA binding activity of RelB were examined in immature and differentiated human DC, as well as other PB mononuclear cell populations. RelB protein and mRNA were detected constitutively in lymphocytes and in activated monocytes, differentiated DC, and monocyte-derived DC. Immunohistochemical staining demonstrated RelB within the differentiated lymph node interdigitating DC and follicular DC, but not undifferentiated DC in normal skin. Active nuclear RelB was detected by supershift assay only in differentiated DC derived from either PB precursors or monocytes and in activated B cells. These RelB(+) APC were potent stimulators of the MLR. The data indicate that RelB expression is regulated both transcriptionally and post-translationally in myeloid cells. Within the nucleus, RelB may specifically transactivate genes that are critical for APC function.
Resumo:
Cutaneous asthenia is a hereditary connective tissue disease, primarily of dogs and cats, resembling Ehlers-Danlos syndrome in man. Collagen dysplasia results in skin hyperextensibility, skin and vessel fragility, and poor wound healing. The purpose of this study was to describe the histological findings in a dog with a collagenopathy consistent with cutaneous asthenia. An 8-month-old crossbreed female dog presented with lacerations and numerous atrophic and irregular scars. The skin was hyperextensible and easily torn by the slightest trauma. Ultrastructurally, the dermis was comprised of elaunin and oxytalan microfibrils. These are immature fibres in which the fibrillar component is increased but elastin is reduced. Collagen fibres were profoundly disorganized. The fibrils had a highly irregular outline and a corroded appearance when viewed in cross-section, and were spiralled and fragmented in a longitudinal view. Dermal fibroblasts displayed a conspicuous thickening of the nuclear lamina. Nuclear lamins form a fibrous nucleoskeletal network of intermediate-sized filaments underlying the inner nuclear membrane. Mutations in lamins or lamin-associated proteins cause a myriad of genetic diseases collectively called laminopathies. Disruption of the nuclear lamina seems to affect chromatin organization and transcriptional regulation of gene expression. A common link among all laminopathies may be a failure of stem cells to regenerate mesenchymal tissue. This could contribute to the connective tissue dysplasia seen in cutaneous asthenia.
Resumo:
The protozoan parasite Leishmania presents a dynamic and plastic genome in which gene amplification and chromosome translocations are common phenomena. Such plasticity hints at the necessity of dependable genome maintenance pathways. Eukaryotic cells have evolved checkpoint control systems that recognize altered DNA structures and halt cell cycle progression allowing DNA repair to take place. In these cells, the PCNA-related heterotrimeric complex formed by the proteins Hus1, Rad9, and Rad1 is known to participate in the early steps of replicative stress sensing and signaling. Here we show that the Hus1 homolog of Leishmania major is a nuclear protein that improves the cell capability to cope with replicative stress. Overexpression of LmHus1 confers resistance to the genotoxic drugs hydroxyurea (HU) and methyl methanesulfonate (MMS) and resistance to HU correlates to reduced net DNA damage upon LmHus1 expression. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Nuclear actin and nuclear myosins have been implicated in the regulation of geneexpression in vertebrate cells. Myosin V is a class of actin-based motor proteins involved in cytoplasmic vesicle transport and anchorage, spindle-pole alignment and mRNA translocation. In this study, myosin-Va, phosphorylated on a conserved serine in the tail domain (phospho-ser(1650) MVa), was localized to subnuclear compartments. A monoclonal antibody, 9E6, raised against a peptide corresponding to phosphoserine(1650) and flanking regions of the murine myosin Va sequence, was immunoreactive to myosin Va heavy chain in cellular and nuclear extracts of HeLa cells, PC12 cells and B16-F10 melanocytes. Immunofluorescence microscopy with this antibody revealed discrete irregular spots within the nucleoplasm that colocalized with SC35, a splicing factor that earmarks nuclear speckles. Phospho-ser(1650) MVa was not detected in other nuclear compartments, such as condensed chromatin, Cajal bodies, gems and perinucleolar caps. Although nucleoli also were not labeled by 9E6 under normal conditions, inhibition of transcription in HeLa cells by actinomycin D caused the redistribution of phospho-ser(1650) MVa to nucleoli, as well as separating a fraction of phosphoser(1650) MVa from SC35 into near-neighboring particles. These observations indicate a novel role for myosin Va in nuclear compartmentalization and offer a new lead towards the understanding of actomyosin-based gene regulation.
Resumo:
Cadherins are crucial molecules mediating cell-cell interactions between somatic and germline cells in insect and mammalian male and female gonads. We analysed the presence and localization of cadherins in ovaries of honeybee queens and in testes of drones. Transcripts representing two classical cadherins, E-cadherin (shotgun) and N-cadherin, as well as three protocadherins (Starry night, Fat and Fat-like) were detected in gonads of both sexes. Pan-cadherin antibodies, which most probably detect a honeybee N-cadherin, were used in immunolocalization analyses. In the germarium of ovarioles, cadherin-IR (cadherin immunoreactivity) was evidenced as homogeneously distributed in the cytoplasm and as nuclear foci, in both germline and somatic cells. It was also detected in polyfusomes and ring canals. In testiolar tubules, cadherin-IR showed a cytoplasmic and nuclear distributon alike in ovaries. The unexpected nuclear localization and cytoplasmic distribution in ovaries and testes were corroborated by immunogold electron microscopy, which revealed cadherin aggregates associated with electron-dense nuclear structures. With respect to cadherin localization, the honeybee differs from Drosophila, the model for gametogenesis in insects, raising the question as to how differences among solitary and social species may be built into and generated from the general architecture of polytrophic meroistic ovaries. It also indicates the possibility of divergent roles for cadherin in the functional architecture of insect gonads, in general, especially in taxa with high reproductive output.
Resumo:
Rationale Sepsis is defined as a systemic inflammatory response to infection, which in its severe form is associated with multiple organ dysfunction syndrome (MODS). The precise mechanisms by Which MODS develops remain unclear. Neutrophils have a pivotal role in the defense against infections; however, overwhelming activation of neutrophils is known to elicit tissue damage. Objectives: We investigated the role of the chemokine receptor CCR2 in driving neutrophil infiltration and eliciting tissue damage in remote organs during sepsis. Methods: Sepsis was induced in wild-type mice treated with CCR2 antagonist (RS504393) or CCR2(-/-) mice by cecal ligation and puncture (CLP) model. Neutrophil infiltration into the organs was measured by myeloperoxidase activity and fluorescence-activated cell sorter. CCR2 expression and chemotaxis were determined in neutrophils stimulated with Toll-like receptor agonists or isolated from septic mice and patients. Measurements and Main Results: CCR2 expression and responsiveness to its ligands was induced in circulating neutrophils during CLP-induced sepsis by a mechanism dependent on Toll-like receptor/nuclear factor-kappa B pathway. Genetic or pharmacologic inhibition of CCR2 protected mice from CLP-induced mortality. This protection was associated with lower infiltration of neutrophils into the lungs, heart, and kidneys and reduced serum biochemical indicators of organ injury and dysfunction. Importantly, neutrophils from septic patients express high levels of CCR2, and the severity of patient illness correlated positively with increasing neutrophil chemotaxis to CCR2 ligands. Conclusions: Collectively, these data identify CCR2 as a key receptor that drives the inappropriate infiltration of neutrophils into remote organs during sepsis. Therefore, CCR2 blockade is a novel potential therapeutic target for treatment of sepsis-induced MODS.
Resumo:
To investigate the relationship between NF-kappa B activation and hepatic stellate cell (HSC) apoptosis in hepatosplenic schistosomiasis, hepatic biopsies from patients with Schistosoma mansoni-induced periportal fibrosis, hepatitis C virus-induced cirrhosis, and normal liver were submitted to alpha-smooth muscle actin (alpha-SMA) and NF-kappa B p65 immunohistochemistry, as well as to NF-kappa B Southwestern histochemistry and TUNEL assay. The numbers of alpha-SMA-positive cells and NF-kappa B- and NF-kappa B p65-positive HSC nuclei were reduced in schistosomal fibrosis relative to liver cirrhosis. In addition, increased HSC NF-kappa B p65 and TUNEL labeling was observed in schistosomiasis when compared to cirrhosis. These results suggest a possible relationship between the slight activation of the NF-kappa B complex and the increase of apoptotic HSC number in schistosome-induced fibrosis, taking place to a reduced HSC number in schistosomiasis in relation to liver cirrhosis. Therefore, the NF-kappa B pathway may constitute an important down-regulatory mechanism in the pathogenesis of human schistosomiasis mansoni, although further studies are needed to refine the understanding of this process. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Ameloblastic fibrosarcoma (AFS), regarded as the malignant counterpart of the benign ameloblastic fibroma, is an extremely rare odontogenic neoplasm with only 68 cases reported in the English literature up to 2009. It is composed of a benign odontogenic epithelium, resembling that of ameloblastoma, and a malignant mesenchymal part exhibiting features of fibrosarcoma. Due to the rarity of the lesion, little is known about its molecular pathogenesis; therefore, in the current study, we sought to evaluate the immunoexpression of Ki67, proliferative cell nuclear antigen, and Bcl-2 proteins in AFS, comparing the results obtained with its benign counterpart, as well as to report a new case of this rare entity affecting a 19-year-old female patient. The results obtained revealed that all the proteins evaluated were overexpressed in the malignant mesenchymal portion of AFS if compared with ameloblastic fibroma, suggesting that nuclear proliferative factors such as Ki67 and proliferative cell nuclear antigen, in association to histopathologic features, may be useful markers for identifying the malignancy and that, despite the lack of molecular analysis in the case reported, Bcl-2 alteration may play a role in AFS pathogenesis. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Receptor activator of nuclear factor kappa B ligand (RANKL) and osteoprotegerin (OPG) are expressed in apical periodontitis, suggesting a role for these molecules during lesion development. However, the profiles of RANKL/OPG expression in periapical lesions remain unknown. In this study we investigated the patterns of RANKL and OPG mRNA expression by real-time polymerase chain reaction in human periapical granulomas (N = 44) and compared them with sites presenting characteristic bone resorbing activity: healthy (n = 14) and orthodontically stretched and compressed periodontal ligament (n = 26), healthy gingiva (n = 24), chronic gingivitis (n = 32), and chronic periodontitis (n = 34) samples. Both RANKL and OPG mRNA expression was higher in periapical granulomas when compared with healthy periodontal ligament. Distinct patterns of RANKL and OPG expression ratio were found in the granulomas and in different physiologic and pathologic conditions, with characteristic bone resorption activity potentially being indicative of the stable or progressive nature of the lesions. Lesions with radiographic image smaller than 5 mm showed higher RANKL/OPG expression than images greater than 5 mm. Periapical granulomas presented heterogeneous patterns of RANKL and OPG expression, ranging from samples with RANKL/OPG ratio similar to that seen in sites with minimal or absent bone resorption to samples with RANKL/OPG expression pattern comparable with active bone resorption sites.