980 resultados para Progenitor-cell Identity
Resumo:
The aim of this investigation was to characterize the proliferative precursor cells in the adult mouse hippocampal region. Given that a very large number of new hippocampal cells are generated over the lifetime of an animal, it is predicted that a neural stem cell is ultimately responsible for maintaining this genesis. Although it is generally accepted that a proliferative precursor resides within the hippocampus, contradictory reports exist regarding the classification of this cell. Is it a true stem cell or a more limited progenitor? Using a strict functional definition of a neural stem cell and a number of in vitro assays, we report that the resident hippocampal precursor is a progenitor capable of proliferation and multipotential differentiation but is unable to self-renew and thus proliferate indefinitely. Furthermore, the mitogen FGF-2 stimulates proliferation of these cells to a greater extent than epidermal growth factor ( EGF). In addition, we found that BDNF was essential for the production of neurons from the hippocampal progenitor cells, being required during proliferation to trigger neuronal fate. In contrast, a bona fide neural stem cell was identified in the lateral wall of the lateral ventricle surrounding the hippocampus. Interestingly, EGF proved to be the stronger mitogenic factor for this cell, which was clearly a different precursor from the resident hippocampal progenitor. These results suggest that the stem cell ultimately responsible for adult hippocampal neurogenesis resides outside the hippocampus, producing progenitor cells that migrate into the neurogenic zones and proliferate to produce new neurons and glia.
Resumo:
The number of cells generated by a proliferating stem or precursor cell can be influenced both by proliferation and by the degree of cell death/survival of the progeny generated. In this study, the extent to which cell survival controls progenitor number was examined by comparing the growth characteristics of neurosphere cultures derived from mice lacking genes for the death inducing Bcl-2 homologue Hara Kiri (Hrk), apoptosis-associated protein 1 (Apaf1), or the prosurvival nuclear factor-kappa B (NF kappa B) subunits p65, p50, or c-rel. We found no evidence that Hrk or Apaf1, and by inference the mitochondrial cell death pathway, are involved in regulating the number of neurosphere-derived progeny. However, we identified the p65p50 NF kappa B dimer as being required for the normal growth and expansion of neurosphere cultures. Genetic loss of both p65 and p50 NF kappa B subunits resulted in a reduced number of progeny but an increased proportion of neurons. No effect on cell survival was observed. This suggests that the number and fate of neural progenitor cells are more strongly regulated by cell cycle control than survival. (c) 2005 Wiley-Liss, Inc.
Resumo:
Stem cell transplantation holds great promise for the treatment of myocardial infarction injury. We recently described the embryonic stem cell-derived cardiac progenitor cells (CPCs) capable of differentiating into cardiomyocytes, vascular endothelium, and smooth muscle. In this study, we hypothesized that transplanted CPCs will preserve function of the infarcted heart by participating in both muscle replacement and neovascularization. Differentiated CPCs formed functional electromechanical junctions with cardiomyocytes in vitro and conducted action potentials over cm-scale distances. When transplanted into infarcted mouse hearts, CPCs engrafted long-term in the infarct zone and surrounding myocardium without causing teratomas or arrhythmias. The grafted cells differentiated into cross-striated cardiomyocytes forming gap junctions with the host cells, while also contributing to neovascularization. Serial echocardiography and pressure-volume catheterization demonstrated attenuated ventricular dilatation and preserved left ventricular fractional shortening, systolic and diastolic function. Our results demonstrate that CPCs can engraft, differentiate, and preserve the functional output of the infarcted heart.
Resumo:
During the last ten years, graphene oxide has been explored in many applications due to its remarkable electroconductivity, thermal properties and mobility of charge carriers, among other properties. As discussed in this review, the literature suggests that a total characterization of graphene oxide must be conducted because oxidation debris (synthesis impurities) present in the graphene oxides could act as a graphene oxide surfactant, stabilizing aqueous dispersions. It is also important to note that the structure models of graphene oxide need to be revisited because of significant implications for its chemical composition and its direct covalent functionalization. Another aspect that is discussed is the need to consider graphene oxide surface chemistry. The hemolysis assay is recommended as a reliable test for the preliminary assessment of graphene oxide toxicity, biocompatibility and cell membrane interaction. More recently, graphene oxide has been extensively explored for drug delivery applications. An important increase in research efforts in this emerging field is clearly represented by the hundreds of related publications per year, including some reviews. Many studies have been performed to explore the graphene oxide properties that enable it to deliver more than one activity simultaneously and to combine multidrug systems with photothermal therapy, indicating that graphene oxide is an attractive tool to overcome hurdles in cancer therapies. Some strategic aspects of the application of these materials in cancer treatment are also discussed. In vitro studies have indicated that graphene oxide can also promote stem cell adhesion, growth and differentiation, and this review discusses the recent and pertinent findings regarding graphene oxide as a valuable nanomaterial for stem cell research in medicine. The protein corona is a key concept in nanomedicine and nanotoxicology because it provides a biomolecular identity for nanomaterials in a biological environment. Understanding protein corona-nanomaterial interactions and their influence on cellular responses is a challenging task at the nanobiointerface. New aspects and developments in this area are discussed.
Resumo:
Background: Mast cells have recently gained new importance as immunoregulatory cells that are involved in numerous pathological processes. One result of these processes is an increase in mast cell numbers at peripheral sites. This study was undertaken to determine the mast cell response in the peritoneal cavity and bone marrow during repopulation of the peritoneal cavity in rats. Results: Two mast cell specific antibodies, mAb AA4 and mAb BGD6, were used to distinguish the committed mast cell precursor from more mature mast cells. The peritoneal cavity was depleted of mast cells using distilled water. Twelve hours after distilled water injection, very immature mast cells could be isolated from the blood and by 48 hours were present in the peritoneal cavity. At this same time the percentage of mast cells in mitosis increased fourfold. Mast cell depletion of the peritoneal cavity also reduced the total number of mast cells in the bone marrow, but increased the number of mast cell committed precursors. Conclusions: In response to mast cell depletion of the peritoneal cavity, a mast cell progenitor is released into the circulation and participates in repopulation of the peritoneal cavity, while the committed mast cell precursor is retained in the bone marrow.
Resumo:
During fetal development, mesenchymal progenitor (MP) cells are co-localized in major hematopoietic territories, such as yolk sac (YS), bone marrow (BM), liver (LV), and others. Studies using mouse and human MP cells isolated from fetus have shown that these cells are very similar but not identical to adult mesenchymal stem cells (MSC). Their differentiation potential is usually restricted to production of highly committed osteogenic and chondrogenic precursors. Such properties of fetal MP cells can be very useful for tissue regeneration, when a great number of committed precursors are required. The objectives of this study were to isolate and characterize MP cells from canine YS, BM, and LV in early and late stages of fetal development. Gestational stage was identified, and cell culture conditions were evaluated for efficient isolation of canine MP cells. All canine fetal MP cells expressed vimentin, nestin, and CD44 proteins. Cytokeratin 18 expression was observed in BM-and LV-MP cells, and vascular endothelial (VE)-cadherin expression was observed only in YS-MP cells. A small number of MP cells (5%) from LV and YS expressed Oct3/4 protein. The differentiation potential of canine fetal MP cells varied significantly: YS- and BM-MP cells differentiated into bone and cartilage, whereas LV-MP cells differentiation was limited to osteogenic fate. None of the canine fetal MP cells were able to differentiate into adipose cells. Our data suggest that canine fetal MP cells are an appropriate in vitro model to study MP biology from hematopoietic territories and they are a source of committed osteogenic and chondrogenic precursors for regenerative medicine.
Resumo:
Even though the involvement of intracellular Ca(2+) (Ca(i)(2+)) in hematopoiesis has been previously demonstrated, the relationship between Ca(i)(2+) signaling and cytokine-induced intracellular pathways remains poorly understood. Herein, the molecular mechanisms integrating Ca(2+) signaling with the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway in primary murine and human hematopoietic stem/progenitor cells stimulated by IL-3 and GM-CSF were studied. Our results demonstrated that IL-3 and GM-CSF stimulation induced increased inositol 1,4,5-trisphosphate (IP(3)) levels and Ca(i)(2+) release in murine and human hematopoietic stem/ progenitor cells. In addition, Ca(i)(2+) signaling inhibitors, such as inositol 1,4,5-trisphosphate receptor antagonist (2-APB), PKC inhibitor (GF109203), and CaMKII inhibitor (KN-62), blocked phosphorylation of MEK activated by IL-3 and GM-CSF, suggesting the participation of Ca(2+)-dependent kinases in MEK activation. In addition, we identify phospholipase C gamma 2 (PLC gamma 2) as a PLC gamma responsible for the induction of Ca(2+) release by IL-3 and GM-CSF in hematopoietic stem/progenitor cells. Furthermore, the PLCg inhibitor U73122 significantly reduced the numbers of granulocyte-macrophage colony-forming units after cytokine stimulation. Similar results were obtained in both murine and human hematopoietic stem/progenitor cells. Taken together, these data indicate a role for PLC gamma 2 and Ca(2+) signaling through the modulation of MEK in both murine and human hematopoietic stem/ progenitor cells. J. Cell. Physiol. 226: 1780-1792, 2011. (C) 2010 Wiley-Liss, Inc.
Resumo:
Autologous hematopoietic stem cell transplantation (HSCT) has proved efficient to treat hematological malignancies. However, some patients fail to mobilize HSCs. It is known that the microenvironment may undergo damage after allogeneic HSCT. However little is known about how chemotherapy and growth factors contribute to this damage. We studied the stromal layer formation(SLF) and velocity before and after HSC mobilization, through long-term bone marrow culture from 22 patients and 10 healthy donors. Patients` SLF was similar at pre- (12/22)and post-mobilization (9/20), however for controls this occurred more at pre- mobilization (9/10; p=0.03). SLF velocity was higher at pre than post-mobilization in both groups. Leukemias and multiple myeloma showed faster growth of SLF than lymphomas at post-mobilization, the latter being similar to controls. These findings could be explained by less uncommitted HSC in controls than patients at post-mobilization. Control HSCs may migrate more in response to mobilization, resulting in a reduced population by those cells.
Resumo:
A diagnostic PCR assay was designed based on conserved regions of previously sequenced densovirus genomic DNA isolated from mosquitoes. Application of this assay to different insect cell lines resulted in a number of cases of consistent positive amplification of the predicted size fragment. Positive PCR results were subsequently confirmed to correlate with densovirus infection by both electron microscopy and indirect fluorescent antibody test. In each case the nucleotide sequence of the amplified PCR fragments showed high identity to previously reported densoviruses isolated from mosquitoes. Phylogenetic analysis based on these sequences showed that two of these isolates were examples of new densoviruses. These viruses could infect and replicate in mosquitoes when administered orally or parenterally and these infections were largely avirulent. In one virus/mosquito combination vertical transmission to progeny was observed. The frequency with which these viruses were detected would suggest that they may be quite common in insect cell lines.
Resumo:
The cut gene of Drosophila melanogaster is an identity selector gene that establishes the program of development and differentiation of external sense organs. Mutations in the cut gene cause a transformation of the external sense organs into chordotonal organs, originally assessed by the use of immunostaining methods [Bodmer et al. (1987): Cell, 51:293-307]. Because of evidence that axonal projections of the transformed neurons within the central nervous system are not completely switched in cut mutants, the transformation of the four cells making up a sense organ was reassessed using single-cell staining with fluorescent dye and differential interface contrast (DIC) microscopy of the embryo and larva. The results provide strong evidence that all cells of the sense organs are completely transformed, exhibiting the morphologies and organelles characteristic of chordotonal sense organs. A comparison of the structures of external sense organs and chordotonal organs indicates that a number of the differences could be due to the degree of development of common structures, and that cut or downstream genes modulate effector genes that are normally utilized in both receptor types. The possible derivation of insect chordotonal and external sense organs from a receptor type found in crustaceans is discussed in the light of arthropod phylogenetics and the molecular genetics of sense organ development. (C) 1997 Wiley-Liss, Inc.
Resumo:
Dendritic cells (DC) can be generated by culture of adherent peripheral blood (PB) cells in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4). There is controversy as to whether these DC arise from proliferating precursors or simply from differentiation of monocytes. DC were generated from myeloid-enriched PB non-T cells or sorted monocytes. DC generated from either population functioned as potent antigen-presenting cells. Uptake of [H-3]-thymidine was observed in DC cultured from myeloid-enriched non-T cells. Addition of lipopolysaccharide or tumor necrosis factor-alpha led to maturation of the DC, but did not inhibit proliferation. Ki67(+) cells were observed in cytospins of these DC, and by double staining were CD3(-)CD19(-)CD11c(-)CD40(-) and myeloperoxidase(+), suggesting that they were myeloid progenitor cells. Analysis of the starting population by flow cytometry demonstrated small numbers of CD34(+)CD33(-)CD14(-) progenitor cells, and numerous granulocyte-macrophage colony-forming units were generated in standard assays. Thus, production of DC in vitro from adherent PB cells also enriches for progenitor cells that are capable of proliferation after exposure to GM-CSF. Of clinical importance, the yield of DC derived in the presence of GM-CSF and IL-4 cannot be expanded beyond the number of starting monocytes. (C) 1998 by The American Society of Hematology.
Resumo:
An understanding of the biochemical control of dendritic cell (DC) differentiation/activation is essential for improving T cell immunity by various immunotherapeutic approaches, including DC immunization. Ligation of CD40 enhances DC function, including conditioning for CTL priming. NF-kappaB, and particularly RelB, is an essential control pathway for myeloid DC differentiation. Furthermore, RelB regulates B cell Ag-presenting function. We hypothesized that CD40 ligand (CD40L) and TNF-alpha, which differ in their capacity to condition DC, would also differ in their capacity to activate NF-kappaB. DC differentiated for 2 days from monocytes in the presence of GM-CSF and IL-4 were used as a model, as NF-kappaB activity was constitutively low. The capacity of DC to activate T cells following CD40L treatment was enhanced compared with TNF-alpha treatment, and this was NF-kappaB dependent. Whereas RelB/p50 translocation induced by TNF-alpha was attenuated after 6 h, RelB/p50 nuclear translocation induced by CD40L was sustained for at least 24 h. The mechanism of this difference related to enhanced degradation of IkappaBalpha following CD40L stimulation. However, NF-kappaB activation induced by TNF-alpha could be sustained by blocking autocrine IL-10. These data indicate that NF-kappaB activation is essential for T cell activation by DC, and that this function is enhanced if DC NF-kappaB activation is prolonged. Because IL-10 moderates DC NF-kappaB activation by TNF-alpha, sustained NF-kappaB activation can be achieved by blocking IL-10 in the presence of stimuli that induce TNF-alpha.
Resumo:
Incomplete revascularization is associated with worse long-term outcomes. Autologous bone marrow cells (BMC) have recently been tested in patients with severe coronary artery disease. We tested the hypothesis that intramyocardial injection of autologous BMC increases myocardial perfusion in patients undergoing incomplete coronary artery bypass grafting (CABG). Twenty-one patients (19 men), 59 +/- 7 years old, with limiting angina and multivessel coronary artery disease (CAD), not amenable to complete CABG were enrolled. BMC were obtained prior to surgery, and the lymphomonocytic fraction separated by density gradient centrifugation. During surgery, 5 mL containing 2.1 +/- 1.3 x 10(8) BMC (CD34+ = 0.8 +/- 0.3%) were injected in the ischemic non-revascularized myocardium. Myocardial perfusion was assessed by magnetic resonance imaging (MRI) at baseline and 1 month after surgery. The increase in myocardial perfusion was compared between patients with < 50% (group A, n = 11) with that of patients with > 50% (group B, n = 10) of target vessels (stenosis a parts per thousand yenaEuro parts per thousand 70%) successfully bypassed. Injected myocardial segments included the inferior (n = 12), anterior (n = 7), and lateral (n = 2) walls. The number of treated vessels (2.3 +/- 0.8) was significantly smaller than the number of target vessels (4.2 +/- 1.0; P < 0.0001). One month after surgery, cardiac MRI showed a similar reduction (%) in the ischemic score of patients in group A (72.5 +/- 3.2), compared to patients in group B (78.1 +/- 3.2; P = .80). Intramyocardial injection of autologous BMC may help increase myocardial perfusion in patients undergoing incomplete CABG, even in those with fewer target vessels successfully treated. This strategy may be an adjunctive therapy for patients suffering from a more advanced (diffuse) CAD not amenable for complete direct revascularization.
Resumo:
Background: Myocardial infarction remains as a major cause of mortality worldwide and a high rate of survivors develop heart failure as a sequel, resulting in a high morbidity and elevated expenditures for health system resources. We have designed a multicenter trial to test for the efficacy of autologous bone marrow (ABM) mononuclear cell (MC) transplantation in this subgroup of patients. The main hypothesis to be tested is that treated patients will have a significantly higher ejection fraction (EF) improvement after 6 months than controls. Methods: A sample of 300 patients admitted with ST elevation acute myocardial infarction (STEMI) and left ventricle (LV) systolic dysfunction, and submitted to successful mechanical or chemical recanalization of the infarct-related coronary artery will be selected for inclusion and randomized to either treated or control group in a double blind manner. The former group will receive 100 x 106 MC suspended in saline with 5% autologous serum in the culprit vessel, while the latter will receive placebo (saline with 5% autologous serum). Implications: Many phase I/II clinical trials using cell therapy for STEMI have been reported, demonstrating that cell transplantation is safe and may lead to better preserved LV function. Patients with high risk to develop systolic dysfunction have the potential to benefit more. Larger randomized, double blind and controlled trials to test for the efficacy of cell therapies in patients with high risk for developing heart failure are required.