774 resultados para Proficiency-based training
Resumo:
The dominant discourse in education and training policies, at the turn of the millennium, was on lifelong learning (LLL) in the context of a knowledge-based society. As Green points (2002, pp. 611-612) several factors contribute to this global trend: The demographic change: In most advanced countries, the average age of the population is increasing, as people live longer; The effects of globalisation: Including both economic restructuring and cultural change which have impacts on the world of education; Global economic restructuring: Which causes, for example, a more intense demand for a higher order of skills; the intensified economic competition, forcing a wave of restructuring and creating enormous pressure to train and retrain the workforce In parallel, the “significance of the international division of labour cannot be underestimated for higher education”, as pointed out by Jarvis (1999, p. 250). This author goes on to argue that globalisation has exacerbated differentiation in the labour market, with the First World converting faster to a knowledge economy and a service society, while a great deal of the actual manufacturing is done elsewhere.
Resumo:
AGM and Conference in Mechelen 27 – 30 April 2010
Resumo:
This paper presents a project consisting on the development of an Intelligent Tutoring System, for training and support concerning the development of electrical installation projects to be used by electrical engineers, technicians and students. One of the major goals of this project is to devise a teaching model based on Intelligent Tutoring techniques, considering not only academic knowledge but also other types of more empirical knowledge, able to achieve successfully the training of electrical installation design.
Resumo:
In recent years, power systems have experienced many changes in their paradigm. The introduction of new players in the management of distributed generation leads to the decentralization of control and decision-making, so that each player is able to play in the market environment. In the new context, it will be very relevant that aggregator players allow midsize, small and micro players to act in a competitive environment. In order to achieve their objectives, virtual power players and single players are required to optimize their energy resource management process. To achieve this, it is essential to have financial resources capable of providing access to appropriate decision support tools. As small players have difficulties in having access to such tools, it is necessary that these players can benefit from alternative methodologies to support their decisions. This paper presents a methodology, based on Artificial Neural Networks (ANN), and intended to support smaller players. In this case the present methodology uses a training set that is created using energy resource scheduling solutions obtained using a mixed-integer linear programming (MIP) approach as the reference optimization methodology. The trained network is used to obtain locational marginal prices in a distribution network. The main goal of the paper is to verify the accuracy of the ANN based approach. Moreover, the use of a single ANN is compared with the use of two or more ANN to forecast the locational marginal price.
Resumo:
Este estudo pretende descrever e compreender o processo formativo dos professores do 1º ciclo do Ensino Básico, no contexto do Programa Nacional de Ensino do Português (PNEP), as suas dimensões mais relevantes e como é percecionada a supervisão nesse processo de formação contínua. A metodologia adotada nesta investigação foi de natureza qualitativa e baseou-se num conjunto de entrevistas semi-diretivas realizadas a formandos que frequentaram o PNEP entre 2008/2010. Dos resultados obtidos foi possível verificar o impacto positivo que esta modalidade de formação contínua teve no desenvolvimento profissional dos professores preparando-os para a implementação do novo programa de português e permitindo-lhes desmistificar o papel do supervisor através da participação numa experiência de supervisão. O trabalho colaborativo entre professores emergiu durante este processo formativo fomentando a construção de saber em colaboração. A prática pedagógica dos professores apresentou mudanças que pretenderam repercutir-se no aproveitamento dos alunos na área da língua portuguesa. - Abstract This study aims to comprehend and describe the formative process and practice of teachers in Basic education (1st Cycle), in the context of the National Programme for the Teaching of Portuguese Language (PNEP), its most relevant dimensions, the factors which affected it and how supervision was perceived by the teachers involved. A qualitative approach was used, based on semi-directed interviews done to teachers that attended the PNEP, from 2008 to 2010. The impact of this type of continuing training on teachers‟ professional development was positive. They felt prepared for the implementation of the new Portuguese Language Programme. They also demystified the role of the supervisor through the participation in an experience of supervision. The teachers‟ collaborative work emerged during this formative process, promoting the construction of knowledge among teachers. Added to this, teachers‟ pedagogical practice also improved reflected on the students‟ proficiency in the Portuguese language.
Resumo:
The future scenarios for operation of smart grids are likely to include a large diversity of players, of different types and sizes. With control and decision making being decentralized over the network, intelligence should also be decentralized so that every player is able to play in the market environment. In the new context, aggregator players, enabling medium, small, and even micro size players to act in a competitive environment, will be very relevant. Virtual Power Players (VPP) and single players must optimize their energy resource management in order to accomplish their goals. This is relatively easy to larger players, with financial means to have access to adequate decision support tools, to support decision making concerning their optimal resource schedule. However, the smaller players have difficulties in accessing this kind of tools. So, it is required that these smaller players can be offered alternative methods to support their decisions. This paper presents a methodology, based on Artificial Neural Networks (ANN), intended to support smaller players’ resource scheduling. The used methodology uses a training set that is built using the energy resource scheduling solutions obtained with a reference optimization methodology, a mixed-integer non-linear programming (MINLP) in this case. The trained network is able to achieve good schedule results requiring modest computational means.
Resumo:
This paper deals with the application of an intelligent tutoring approach to delivery training in diagnosis procedures of a Power System. In particular, the mechanisms implemented by the training tool to support the trainees are detailed. This tool is part of an architecture conceived to integrate Power Systems tools in a Power System Control Centre, based on an Ambient Intelligent paradigm. The present work is integrated in the CITOPSY project which main goal is to achieve a better integration between operators and control room applications, considering the needs of people, customizing requirements and forecasting behaviors.
Resumo:
This paper describes an architecture conceived to integrate Power Sys-tems tools in a Power System Control Centre, based on an Ambient Intelligent (AmI) paradigm. This architecture is an instantiation of the generic architecture proposed in [1] for developing systems that interact with AmI environments. This architecture has been proposed as a consequence of a methodology for the inclu-sion of Artificial Intelligence in AmI environments (ISyRAmI - Intelligent Sys-tems Research for Ambient Intelligence). The architecture presented in the paper will be able to integrate two applications in the control room of a power system transmission network. The first is SPARSE expert system, used to get diagnosis of incidents and to support power restoration. The second application is an Intelligent Tutoring System (ITS) incorporating two training tools. The first tutoring tool is used to train operators to get the diagnosis of incidents. The second one is another tutoring tool used to train operators to perform restoration procedures.
Resumo:
The activity of Control Center operators is important to guarantee the effective performance of Power Systems. Operators’ actions are crucial to deal with incidents, especially severe faults like blackouts. In this paper, we present an Intelligent Tutoring approach for training Portuguese Control Center operators in tasks like incident analysis and diagnosis, and service restoration of Power Systems. Intelligent Tutoring System (ITS) approach is used in the training of the operators, having into account context awareness and the unobtrusive integration in the working environment. Several Artificial Intelligence techniques were criteriously used and combined together to obtain an effective Intelligent Tutoring environment, namely Multiagent Systems, Neural Networks, Constraint-based Modeling, Intelligent Planning, Knowledge Representation, Expert Systems, User Modeling, and Intelligent User Interfaces.
Resumo:
In this work the identification and diagnosis of various stages of chronic liver disease is addressed. The classification results of a support vector machine, a decision tree and a k-nearest neighbor classifier are compared. Ultrasound image intensity and textural features are jointly used with clinical and laboratorial data in the staging process. The classifiers training is performed by using a population of 97 patients at six different stages of chronic liver disease and a leave-one-out cross-validation strategy. The best results are obtained using the support vector machine with a radial-basis kernel, with 73.20% of overall accuracy. The good performance of the method is a promising indicator that it can be used, in a non invasive way, to provide reliable information about the chronic liver disease staging.
Resumo:
In this work, we present a neural network (NN) based method designed for 3D rigid-body registration of FMRI time series, which relies on a limited number of Fourier coefficients of the images to be aligned. These coefficients, which are comprised in a small cubic neighborhood located at the first octant of a 3D Fourier space (including the DC component), are then fed into six NN during the learning stage. Each NN yields the estimates of a registration parameter. The proposed method was assessed for 3D rigid-body transformations, using DC neighborhoods of different sizes. The mean absolute registration errors are of approximately 0.030 mm in translations and 0.030 deg in rotations, for the typical motion amplitudes encountered in FMRI studies. The construction of the training set and the learning stage are fast requiring, respectively, 90 s and 1 to 12 s, depending on the number of input and hidden units of the NN. We believe that NN-based approaches to the problem of FMRI registration can be of great interest in the future. For instance, NN relying on limited K-space data (possibly in navigation echoes) can be a valid solution to the problem of prospective (in frame) FMRI registration.
Resumo:
Purpose - The study evaluates the pre- and post-training lesion localisation ability of a group of novice observers. Parallels are drawn with the performance of inexperienced radiographers taking part in preliminary clinical evaluation (PCE) and ‘red-dot’ systems, operating within radiography practice. Materials and methods - Thirty-four novice observers searched 92 images for simulated lesions. Pre-training and post-training evaluations were completed following the free-response the receiver operating characteristic (FROC) method. Training consisted of observer performance methodology, the characteristics of the simulated lesions and information on lesion frequency. Jackknife alternative FROC (JAFROC) and highest rating inferred ROC analyses were performed to evaluate performance difference on lesion-based and case-based decisions. The significance level of the test was set at 0.05 to control the probability of Type I error. Results - JAFROC analysis (F(3,33) = 26.34, p < 0.0001) and highest-rating inferred ROC analysis (F(3,33) = 10.65, p = 0.0026) revealed a statistically significant difference in lesion detection performance. The JAFROC figure-of-merit was 0.563 (95% CI 0.512,0.614) pre-training and 0.677 (95% CI 0.639,0.715) post-training. Highest rating inferred ROC figure-of-merit was 0.728 (95% CI 0.701,0.755) pre-training and 0.772 (95% CI 0.750,0.793) post-training. Conclusions - This study has demonstrated that novice observer performance can improve significantly. This study design may have relevance in the assessment of inexperienced radiographers taking part in PCE or commenting scheme for trauma.
Resumo:
A survey to assess training needs in TQM was developed in several European countries, within the framework of a Leonardo’s project named IMVOCED. Beyond a comparison of the results in each country, a global analysis was performed to design a TQM programme to be delivered by WBL (Work Based Learning). Differences were found between countries, and the Portuguese results also revealed that different approaches to TQM training should be adopted according to the organisation’s dimension. Based on this evidence, two different strategies for TQM training by WBL are proposed and discussed.
Resumo:
In an increasingly competitive and globalized world, companies need effective training methodologies and tools for their employees. However, selecting the most suitable ones is not an easy task. It depends on the requirements of the target group (namely time restrictions), on the specificities of the contents, etc. This is typically the case for training in Lean, the waste elimination manufacturing philosophy. This paper presents and compares two different approaches to lean training methodologies and tools: a simulation game based on a single realistic manufacturing platform, involving production and assembly operations that allows learning by playing; and a digital game that helps understand lean tools. This paper shows that both tools have advantages in terms of trainee motivation and knowledge acquisition. Furthermore, they can be used in a complementary way, reinforcing the acquired knowledge.
Resumo:
Recent trends show an increasing number of weblabs, implemented at universities and schools, supporting practical training in technical courses and providing the ability to remotely conduct experiments. However, their implementation is typically based on individual architectures, unable of being reconfigured with different instruments/modules usually required by every experiment. In this paper, we discuss practical guidelines for implementing reconfigurable weblabs that support both local and remote control interfaces. The underlying infrastructure is based on reconfigurable, low-cost, FPGA-based boards supporting several peripherals that are used for the local interface. The remote interface is powered by a module capable of communicating with an Ethernet based network and that can either correspond to an internal core of the FPGA or an external device. These two approaches are discussed in the paper, followed by a practical implementation example.