911 resultados para Process system value
Resumo:
Starting from the classical Saltzman two-dimensional convection equations, we derive via a severe spectral truncation a minimal 10 ODE system which includes the thermal effect of viscous dissipation. Neglecting this process leads to a dynamical system which includes a decoupled generalized Lorenz system. The consideration of this process breaks an important symmetry and couples the dynamics of fast and slow variables, with the ensuing modifications to the structural properties of the attractor and of the spectral features. When the relevant nondimensional number (Eckert number Ec) is different from zero, an additional time scale of O(Ec−1) is introduced in the system, as shown with standard multiscale analysis and made clear by several numerical evidences. Moreover, the system is ergodic and hyperbolic, the slow variables feature long-term memory with 1/f3/2 power spectra, and the fast variables feature amplitude modulation. Increasing the strength of the thermal-viscous feedback has a stabilizing effect, as both the metric entropy and the Kaplan-Yorke attractor dimension decrease monotonically with Ec. The analyzed system features very rich dynamics: it overcomes some of the limitations of the Lorenz system and might have prototypical value in relevant processes in complex systems dynamics, such as the interaction between slow and fast variables, the presence of long-term memory, and the associated extreme value statistics. This analysis shows how neglecting the coupling of slow and fast variables only on the basis of scale analysis can be catastrophic. In fact, this leads to spurious invariances that affect essential dynamical properties (ergodicity, hyperbolicity) and that cause the model losing ability in describing intrinsically multiscale processes.
Resumo:
We present a benchmark system for global vegetation models. This system provides a quantitative evaluation of multiple simulated vegetation properties, including primary production; seasonal net ecosystem production; vegetation cover, composition and 5 height; fire regime; and runoff. The benchmarks are derived from remotely sensed gridded datasets and site-based observations. The datasets allow comparisons of annual average conditions and seasonal and inter-annual variability, and they allow the impact of spatial and temporal biases in means and variability to be assessed separately. Specifically designed metrics quantify model performance for each process, 10 and are compared to scores based on the temporal or spatial mean value of the observations and a “random” model produced by bootstrap resampling of the observations. The benchmark system is applied to three models: a simple light-use efficiency and water-balance model (the Simple Diagnostic Biosphere Model: SDBM), and the Lund-Potsdam-Jena (LPJ) and Land Processes and eXchanges (LPX) dynamic global 15 vegetation models (DGVMs). SDBM reproduces observed CO2 seasonal cycles, but its simulation of independent measurements of net primary production (NPP) is too high. The two DGVMs show little difference for most benchmarks (including the interannual variability in the growth rate and seasonal cycle of atmospheric CO2), but LPX represents burnt fraction demonstrably more accurately. Benchmarking also identified 20 several weaknesses common to both DGVMs. The benchmarking system provides a quantitative approach for evaluating how adequately processes are represented in a model, identifying errors and biases, tracking improvements in performance through model development, and discriminating among models. Adoption of such a system would do much to improve confidence in terrestrial model predictions of climate change 25 impacts and feedbacks.
Resumo:
We present a benchmark system for global vegetation models. This system provides a quantitative evaluation of multiple simulated vegetation properties, including primary production; seasonal net ecosystem production; vegetation cover; composition and height; fire regime; and runoff. The benchmarks are derived from remotely sensed gridded datasets and site-based observations. The datasets allow comparisons of annual average conditions and seasonal and inter-annual variability, and they allow the impact of spatial and temporal biases in means and variability to be assessed separately. Specifically designed metrics quantify model performance for each process, and are compared to scores based on the temporal or spatial mean value of the observations and a "random" model produced by bootstrap resampling of the observations. The benchmark system is applied to three models: a simple light-use efficiency and water-balance model (the Simple Diagnostic Biosphere Model: SDBM), the Lund-Potsdam-Jena (LPJ) and Land Processes and eXchanges (LPX) dynamic global vegetation models (DGVMs). In general, the SDBM performs better than either of the DGVMs. It reproduces independent measurements of net primary production (NPP) but underestimates the amplitude of the observed CO2 seasonal cycle. The two DGVMs show little difference for most benchmarks (including the inter-annual variability in the growth rate and seasonal cycle of atmospheric CO2), but LPX represents burnt fraction demonstrably more accurately. Benchmarking also identified several weaknesses common to both DGVMs. The benchmarking system provides a quantitative approach for evaluating how adequately processes are represented in a model, identifying errors and biases, tracking improvements in performance through model development, and discriminating among models. Adoption of such a system would do much to improve confidence in terrestrial model predictions of climate change impacts and feedbacks.
Resumo:
The increased concern for the impacts of climate change on the environment, along with the growing industry of renewable energy sources, and especially wind power, has made the valuation of environmental services and goods of great significance. Offshore wind energy is being exploited exponentially and its importance for renewable energy generation is increasing. We apply a double-bound dichotomous Contingent Valuation Method analysis in order to both a) estimating the Willingness to Pay (WTP) of Greek residents for green electricity produced by offshore wind farm located between the islands of Tinos and Andros and b) identifying factors behind respondents’ WTP including individual’s behaviour toward environment and individual’s views on climate change and renewable energy. A total of 141 respondents participated in the questionnaire. Results show that the respondents are willing to pay on average 20€ every two months through their electricity bill in return for carbon-free electricity and water saving from the wind farm. Respondents’ environmental consciousness and their perception towards climate change and renewable energy have a positive effect on their WTP.
Resumo:
Over the last decade the English planning system has placed greater emphasis on the financial viability of development. ‘Calculative’ practices have been used to quantify and capture land value uplifts. Development viability appraisal (DVA) has become a key part of the evidence base used in planning decision-making and informs both ‘site-specific’ negotiations about the level of land value capture for individual schemes and ‘area-wide’ planning policy formation. This paper investigates how implementation of DVA is governed in planning policy formation. It is argued that the increased use of DVA raises important questions about how planning decisions are made and operationalised, not least because DVA is often poorly understood by some key stakeholders. The paper uses the concept of governance to thematically analyse semi-structured interviews conducted with the producers of DVAs and considers key procedural issues including (in)consistencies in appraisal practices, levels of stakeholder consultation and the potential for client and producer bias. Whilst stakeholder consultation is shown to be integral to the appraisal process in order to improve the quality of the appraisals and to legitimise the outputs, participation is restricted to industry experts and excludes some interest groups, including local communities. It is concluded that, largely because of its recent adoption and knowledge asymmetries between local planning authorities and appraisers, DVA is a weakly governed process characterised by emerging and contested guidance and is therefore ‘up for grabs’.
Resumo:
For over three decades, negotiated planning obligations have been the primary form of land value capture in England. Diffusing and evolving over the last decade, a significant policy innovation has been the use of financial calculations to estimate the extent to which policies on planning obligations for actual, proposed development projects and in plan making affect the financial viability of development. This paper assesses the extent to which the use of financial appraisals has provided a robust, just and practical procedure to support land value capture. It is concluded that development viability appraisals are saturated with intrinsic uncertainty and that land value capture that is based on such calculations is, to some extent, capricious. In addition, clear incentives for developers and land owners to bias viability calculations, the economic dependence of many viability consultants on developers and land owners, a lack of transparency, contested or ambiguous guidance and the opportunities created by input uncertainty for bias are further failings. It is argued that how viability calculations are applied has been, is being and will continue to be shaped by power relations.
Resumo:
This work reports the energy transfer mechanism process of [Eu(TTA)(2)(NO(3))(TPPO)(2)] (bis-TTA complex) and [Eu(TTA)(3)(TPPO)(2)] (tris-TTA complex) based on experimental and theoretical spectroscopic properties, where TTA = 2-thienoyltrifluoroacetone and TPPO = triphenylphosphine oxide. These complexes were synthesized and characterized by elemental analyses, infrared spectroscopy and thermogavimetric analysis. The theoretical complexes geometry data by using Sparkle model for the calculation of lanthanide complexes (SMLC) is in agreement with the crystalline structure determined by single-crystal X-ray diffraction analysis. The emission spectra for [Gd(TTA)(3)(TPPO)(2)] and [Gd(TTA)(2) (NO(3))(TPPO)(2)] complexes are associated to T -> S(0) transitions centered on coordinated TTA ligands. Experimental luminescent properties of the bis-TTA complex have been quantified through emission intensity parameters Omega(lambda)(lambda = 2 and 4), spontaneous emission rates (A(rad)), luminescence lifetime (tau), emission quantum efficiency (eta) and emission quantum yield (q), which were compared with those for tris-TTA complex. The experimental data showed that the intensity parameter value for bis-TTA complex is twice smaller than the one for tris-TTA complex, indicating the less polarizable chemical environment in the system containing nitrate ion. A good agreement between the theoretical and experimental quantum yields for both Eu(Ill) complexes was obtained. The triboluminescence (TL) of the [Eu(TTA)(2)(NO(3))(TPPO)(2)] complexes are discussed in terms of ligand-to-metal energy transfer. (c) 2007 Elsevier B.V. All fights reserved.
Resumo:
The pulp- and paper production is a very energy intensive industry sector. Both Sweden and the U.S. are major pulpandpaper producers. This report examines the energy and the CO2-emission connected with the pulp- and paperindustry for the two countries from a lifecycle perspective.New technologies make it possible to increase the electricity production in the integrated pulp- andpaper mill through black liquor gasification and a combined cycle (BLGCC). That way, the mill canproduce excess electricity, which can be sold and replace electricity produced in power plants. In thisprocess the by-products that are formed at the pulp-making process is used as fuel to produce electricity.In pulp- and paper mills today the technology for generating energy from the by-product in aTomlinson boiler is not as efficient as it could be compared to the BLGCC technology. Scenarios havebeen designed to investigate the results from using the BLGCC technique using a life cycle analysis.Two scenarios are being represented by a 1994 mill in the U.S. and a 1994 mill in Sweden.The scenariosare based on the average energy intensity of pulp- and paper mills as operating in 1994 in the U.S.and Sweden respectively. The two other scenarios are constituted by a »reference mill« in the U.S. andSweden using state-of-the-art technology. We investigate the impact of varying recycling rates and totalenergy use and CO2-emissions from the production of printing and writing paper. To economize withthe wood and that way save trees, we can use the trees that are replaced by recycling in a biomassgasification combined cycle (BIGCC) to produce electricity in a power station. This produces extra electricitywith a lower CO2 intensity than electricity generated by, for example, coal-fired power plants.The lifecycle analysis in this thesis also includes the use of waste treatment in the paper lifecycle. Both Sweden and theU.S. are countries that recycle paper. Still there is a lot of paper waste, this paper is a part of the countries municipalsolid waste (MSW). A lot of the MSW is landfilled, but parts of it are incinerated to extract electricity. The thesis hasdesigned special scenarios for the use of MSW in the lifecycle analysis.This report is studying and comparing two different countries and two different efficiencies on theBLGCC in four different scenarios. This gives a wide survey and points to essential parameters to specificallyreflect on, when making assumptions in a lifecycle analysis. The report shows that there arethree key parameters that have to be carefully considered when making a lifecycle analysis of wood inan energy and CO2-emission perspective in the pulp- and paper mill in the U.S. and in Sweden. First,there is the energy efficiency in the pulp- and paper mill, then the efficiency of the BLGCC and last theCO2 intensity of the electricity displaced by BIGCC or BLGCC generatedelectricity. It also show that with the current technology that we havetoday, it is possible to produce CO2 free paper with a waste paper amountup to 30%. The thesis discusses the system boundaries and the assumptions.Further and more detailed research, including amongst others thesystem boundaries and forestry, is recommended for more specificanswers.
Resumo:
The study reported here is part of a large project for evaluation of the Thermo-Chemical Accumulator (TCA), a technology under development by the Swedish company ClimateWell AB. The studies concentrate on the use of the technology for comfort cooling. This report concentrates on measurements in the laboratory, modelling and system simulation. The TCA is a three-phase absorption heat pump that stores energy in the form of crystallised salt, in this case Lithium Chloride (LiCl) with water being the other substance. The process requires vacuum conditions as with standard absorption chillers using LiBr/water. Measurements were carried out in the laboratories at the Solar Energy Research Center SERC, at Högskolan Dalarna as well as at ClimateWell AB. The measurements at SERC were performed on a prototype version 7:1 and showed that this prototype had several problems resulting in poor and unreliable performance. The main results were that: there was significant corrosion leading to non-condensable gases that in turn caused very poor performance; unwanted crystallisation caused blockages as well as inconsistent behaviour; poor wetting of the heat exchangers resulted in relatively high temperature drops there. A measured thermal COP for cooling of 0.46 was found, which is significantly lower than the theoretical value. These findings resulted in a thorough redesign for the new prototype, called ClimateWell 10 (CW10), which was tested briefly by the authors at ClimateWell. The data collected here was not large, but enough to show that the machine worked consistently with no noticeable vacuum problems. It was also sufficient for identifying the main parameters in a simulation model developed for the TRNSYS simulation environment, but not enough to verify the model properly. This model was shown to be able to simulate the dynamic as well as static performance of the CW10, and was then used in a series of system simulations. A single system model was developed as the basis of the system simulations, consisting of a CW10 machine, 30 m2 flat plate solar collectors with backup boiler and an office with a design cooling load in Stockholm of 50 W/m2, resulting in a 7.5 kW design load for the 150 m2 floor area. Two base cases were defined based on this: one for Stockholm using a dry cooler with design cooling rate of 30 kW; one for Madrid with a cooling tower with design cooling rate of 34 kW. A number of parametric studies were performed based on these two base cases. These showed that the temperature lift is a limiting factor for cooling for higher ambient temperatures and for charging with fixed temperature source such as district heating. The simulated evacuated tube collector performs only marginally better than a good flat plate collector if considering the gross area, the margin being greater for larger solar fractions. For 30 m2 collector a solar faction of 49% and 67% were achieved for the Stockholm and Madrid base cases respectively. The average annual efficiency of the collector in Stockholm (12%) was much lower than that in Madrid (19%). The thermal COP was simulated to be approximately 0.70, but has not been possible to verify with measured data. The annual electrical COP was shown to be very dependent on the cooling load as a large proportion of electrical use is for components that are permanently on. For the cooling loads studied, the annual electrical COP ranged from 2.2 for a 2000 kWh cooling load to 18.0 for a 21000 kWh cooling load. There is however a potential to reduce the electricity consumption in the machine, which would improve these figures significantly. It was shown that a cooling tower is necessary for the Madrid climate, whereas a dry cooler is sufficient for Stockholm although a cooling tower does improve performance. The simulation study was very shallow and has shown a number of areas that are important to study in more depth. One such area is advanced control strategy, which is necessary to mitigate the weakness of the technology (low temperature lift for cooling) and to optimally use its strength (storage).
Resumo:
The study aims to assess the empirical adherence of the permanent income theory and the consumption smoothing view in Latin America. Two present value models are considered, one describing household behavior and the other open economy macroeconomics. Following the methodology developed in Campbell and Schiller (1987), Bivariate Vector Autoregressions are estimated for the saving ratio and the real growth rate of income concerning the household behavior model and for the current account and the change in national cash ‡ow regarding the open economy model. The countries in the sample are considered separately in the estimation process (individual system estimation) as well as jointly (joint system estimation). Ordinary Least Squares (OLS) and Seemingly Unrelated Regressions (SURE) estimates of the coe¢cients are generated. Wald Tests are then conducted to verify if the VAR coe¢cient estimates are in conformity with those predicted by the theory. While the empirical results are sensitive to the estimation method and discount factors used, there is only weak evidence in favor of the permanent income theory and consumption smoothing view in the group of countries analyzed.
Resumo:
Organizations are Complex systems. A conceptual model of the enterprise is needed that is: coherent the distinguished aspect models constitute a logical and truly integral comprehensive all relevant issues are covered consistent the aspect models are free from contradictions or irregularities concise no superfluous matters are contained in it essential it shows only the essence of the enterprise, i.e., the model abstracts from all realization and implementation issues. The world is in great need for transparency about the operation of all the systems we daily work with, ranging from the domestic appliances to the big societal institutions. In this context the field of enterprise ontology has emerged with the aim to create models that help to understand the essence of the construction and operation of complete systems; more specifically, of enterprises. Enterprise ontology arises in the way to look through the distracting and confusing appearance of an enterprise right into its deep kernel. This, from the perspective of the system designer gives him the tools needed to design a successful system in a way that’s reflects the desires and needs of the workers of the enterprise. This project’s context is the use of DEMO (Design and Engineering Methodology for Organizations) for (re)designing or (re)engineering of an enterprise, namely a process of the construction department of a city hall, the lack of a well-founded theory about the construction and operation of this processes that was the motivation behind this work. The purpose of studying applying the DEMO theory and method was to optimize the process, automating it as much as possible, while reducing paper and time spent between tasks and provide a better service to the citizens.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work aims to investigate the efficiency of digital signal processing tools of acoustic emission signals in order to detect thermal damages in grinding process. To accomplish such a goal, an experimental work was carried out for 15 runs in a surface grinding machine operating with an aluminum oxide grinding wheel and ABNT 1045. The acoustic emission signals were acquired from a fixed sensor placed on the workpiece holder. A high sampling rate data acquisition system at 2.5 MHz was used to collect the raw acoustic emission instead of root mean square value usually employed. Many statistics have shown effective to detect burn, such as the root mean square (RMS), correlation of the AE, constant false alarm (CFAR), ratio of power (ROP) and mean-value deviance (MVD). However, the CFAR, ROP, Kurtosis and correlation of the AE have been presented more sensitive than the RMS.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)