987 resultados para Probability generating function


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have studied the soliton propagation through a segment containing random pointlike scatterers. In the limit of small concentration of scatterers when the mean distance between the scatterers is larger than the soliton width, a method has been developed for obtaining the statistical characteristics of the soliton transmission through the segment. The method is applicable for any classical particle traversing through a disordered segment with the given velocity transformation after each act of scattering. In the case of weak scattering and relatively short disordered segment the transmission time delay of a fast soliton is mostly determined by the shifts of the soliton center after each act of scattering. For sufficiently long segments the main contribution to the delay is due to the shifts of the amplitude and velocity of a fast soliton after each scatterer. Corresponding crossover lengths for both cases of light and heavy solitons have been obtained. We have also calculated the exact probability density function of the soliton transmission time delay for a sufficiently long segment. In the case of weak identical scatterers the latter is a universal function which depends on a sole parameter—the mean number of scatterers in a segment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The generation of very short range forecasts of precipitation in the 0-6 h time window is traditionally referred to as nowcasting. Most existing nowcasting systems essentially extrapolate radar observations in some manner, however, very few systems account for the uncertainties involved. Thus deterministic forecast are produced, which have a limited use when decisions must be made, since they have no measure of confidence or spread of the forecast. This paper develops a Bayesian state space modelling framework for quantitative precipitation nowcasting which is probabilistic from conception. The model treats the observations (radar) as noisy realisations of the underlying true precipitation process, recognising that this process can never be completely known, and thus must be represented probabilistically. In the model presented here the dynamics of the precipitation are dominated by advection, so this is a probabilistic extrapolation forecast. The model is designed in such a way as to minimise the computational burden, while maintaining a full, joint representation of the probability density function of the precipitation process. The update and evolution equations avoid the need to sample, thus only one model needs be run as opposed to the more traditional ensemble route. It is shown that the model works well on both simulated and real data, but that further work is required before the model can be used operationally. © 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ERS-1 Satellite was launched in July 1991 by the European Space Agency into a polar orbit at about 800 km, carrying a C-band scatterometer. A scatterometer measures the amount of backscatter microwave radiation reflected by small ripples on the ocean surface induced by sea-surface winds, and so provides instantaneous snap-shots of wind flow over large areas of the ocean surface, known as wind fields. Inherent in the physics of the observation process is an ambiguity in wind direction; the scatterometer cannot distinguish if the wind is blowing toward or away from the sensor device. This ambiguity implies that there is a one-to-many mapping between scatterometer data and wind direction. Current operational methods for wind field retrieval are based on the retrieval of wind vectors from satellite scatterometer data, followed by a disambiguation and filtering process that is reliant on numerical weather prediction models. The wind vectors are retrieved by the local inversion of a forward model, mapping scatterometer observations to wind vectors, and minimising a cost function in scatterometer measurement space. This thesis applies a pragmatic Bayesian solution to the problem. The likelihood is a combination of conditional probability distributions for the local wind vectors given the scatterometer data. The prior distribution is a vector Gaussian process that provides the geophysical consistency for the wind field. The wind vectors are retrieved directly from the scatterometer data by using mixture density networks, a principled method to model multi-modal conditional probability density functions. The complexity of the mapping and the structure of the conditional probability density function are investigated. A hybrid mixture density network, that incorporates the knowledge that the conditional probability distribution of the observation process is predominantly bi-modal, is developed. The optimal model, which generalises across a swathe of scatterometer readings, is better on key performance measures than the current operational model. Wind field retrieval is approached from three perspectives. The first is a non-autonomous method that confirms the validity of the model by retrieving the correct wind field 99% of the time from a test set of 575 wind fields. The second technique takes the maximum a posteriori probability wind field retrieved from the posterior distribution as the prediction. For the third technique, Markov Chain Monte Carlo (MCMC) techniques were employed to estimate the mass associated with significant modes of the posterior distribution, and make predictions based on the mode with the greatest mass associated with it. General methods for sampling from multi-modal distributions were benchmarked against a specific MCMC transition kernel designed for this problem. It was shown that the general methods were unsuitable for this application due to computational expense. On a test set of 100 wind fields the MAP estimate correctly retrieved 72 wind fields, whilst the sampling method correctly retrieved 73 wind fields.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Distributed Brillouin sensing of strain and temperature works by making spatially resolved measurements of the position of the measurand-dependent extremum of the resonance curve associated with the scattering process in the weakly nonlinear regime. Typically, measurements of backscattered Stokes intensity (the dependent variable) are made at a number of predetermined fixed frequencies covering the design measurand range of the apparatus and combined to yield an estimate of the position of the extremum. The measurand can then be found because its relationship to the position of the extremum is assumed known. We present analytical expressions relating the relative error in the extremum position to experimental errors in the dependent variable. This is done for two cases: (i) a simple non-parametric estimate of the mean based on moments and (ii) the case in which a least squares technique is used to fit a Lorentzian to the data. The question of statistical bias in the estimates is discussed and in the second case we go further and present for the first time a general method by which the probability density function (PDF) of errors in the fitted parameters can be obtained in closed form in terms of the PDFs of the errors in the noisy data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The statistics of the reflection spectrum of a short-correlated disordered fiber Bragg grating are studied. The averaged spectrum appears to be flat inside the bandgap and has significantly suppressed sidelobes compared to the uniform grating of the same bandwidth. This is due to the Anderson localization of the modes of a disordered grating. This observation prompts a new algorithm for designing passband reflection gratings. Using the stochastic invariant imbedding approach it is possible to obtain the probability distribution function for the random reflection coefficient inside the bandgap and obtain both the variance of the averaged reflectivity as well as the distribution of the time delay of the grating.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Orthogonal frequency division multiplexing (OFDM) is becoming a fundamental technology in future generation wireless communications. Call admission control is an effective mechanism to guarantee resilient, efficient, and quality-of-service (QoS) services in wireless mobile networks. In this paper, we present several call admission control algorithms for OFDM-based wireless multiservice networks. Call connection requests are differentiated into narrow-band calls and wide-band calls. For either class of calls, the traffic process is characterized as batch arrival since each call may request multiple subcarriers to satisfy its QoS requirement. The batch size is a random variable following a probability mass function (PMF) with realistically maximum value. In addition, the service times for wide-band and narrow-band calls are different. Following this, we perform a tele-traffic queueing analysis for OFDM-based wireless multiservice networks. The formulae for the significant performance metrics call blocking probability and bandwidth utilization are developed. Numerical investigations are presented to demonstrate the interaction between key parameters and performance metrics. The performance tradeoff among different call admission control algorithms is discussed. Moreover, the analytical model has been validated by simulation. The methodology as well as the result provides an efficient tool for planning next-generation OFDM-based broadband wireless access systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a stochastic agent-based model for the distribution of personal incomes in a developing economy. We start with the assumption that incomes are determined both by individual labour and by stochastic effects of trading and investment. The income from personal effort alone is distributed about a mean, while the income from trade, which may be positive or negative, is proportional to the trader's income. These assumptions lead to a Langevin model with multiplicative noise, from which we derive a Fokker-Planck (FP) equation for the income probability density function (IPDF) and its variation in time. We find that high earners have a power law income distribution while the low-income groups have a Levy IPDF. Comparing our analysis with the Indian survey data (obtained from the world bank website: http://go.worldbank.org/SWGZB45DN0) taken over many years we obtain a near-perfect data collapse onto our model's equilibrium IPDF. Using survey data to relate the IPDF to actual food consumption we define a poverty index (Sen A. K., Econometrica., 44 (1976) 219; Kakwani N. C., Econometrica, 48 (1980) 437), which is consistent with traditional indices, but independent of an arbitrarily chosen "poverty line" and therefore less susceptible to manipulation. Copyright © EPLA, 2010.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Distributed Brillouin sensing of strain and temperature works by making spatially resolved measurements of the position of the measurand-dependent extremum of the resonance curve associated with the scattering process in the weakly nonlinear regime. Typically, measurements of backscattered Stokes intensity (the dependent variable) are made at a number of predetermined fixed frequencies covering the design measurand range of the apparatus and combined to yield an estimate of the position of the extremum. The measurand can then be found because its relationship to the position of the extremum is assumed known. We present analytical expressions relating the relative error in the extremum position to experimental errors in the dependent variable. This is done for two cases: (i) a simple non-parametric estimate of the mean based on moments and (ii) the case in which a least squares technique is used to fit a Lorentzian to the data. The question of statistical bias in the estimates is discussed and in the second case we go further and present for the first time a general method by which the probability density function (PDF) of errors in the fitted parameters can be obtained in closed form in terms of the PDFs of the errors in the noisy data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate the statistics of a vector Manakov soliton in the presence of additive Gaussian white noise. The adiabatic perturbation theory for a Manakov soliton yields a stochastic Langevin system which we analyse via the corresponding Fokker-Planck equation for the probability density function (PDF) for the soliton parameters. We obtain marginal PDFs for the soliton frequency and amplitude as well as soliton amplitude and polarization angle. We also derive formulae for the variances of all soliton parameters and analyse their dependence on the initial values of polarization angle and phase. © 2006 IOP Publishing Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this letter, we experimentally study the statistical properties of a received QPSK modulated signal and compare various bit error rate (BER) estimation methods for coherent optical orthogonal frequency division multiplexing transmission. We show that the statistical BER estimation method based on the probability density function of the received QPSK symbols offers the most accurate estimate of the system performance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We develop a theoretical method to calculate jitter statistics of interacting solitons. Applying this approach, we have derived the non-Gaussian probability density function and calculated the bit-error rate as a function of noise level, initial separation and phase difference between solitons.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper resolves the long standing debate as to the proper time scale τ of the onset of the immunological synapse bond, the noncovalent chemical bond defining the immune pathways involving T cells and antigen presenting cells. Results from our model calculations show τ to be of the order of seconds instead of minutes. Close to the linearly stable regime, we show that in between the two critical spatial thresholds defined by the integrin:ligand pair (Δ2∼ 40-45 nm) and the T-cell receptor TCR:peptide-major-histocompatibility-complex pMHC bond (Δ1∼ 14-15 nm), τ grows monotonically with increasing coreceptor bond length separation δ (= Δ2-Δ1∼ 26-30 nm) while τ decays with Δ1 for fixed Δ2. The nonuniversal δ-dependent power-law structure of the probability density function further explains why only the TCR:pMHC bond is a likely candidate to form a stable synapse.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Robust controllers for nonlinear stochastic systems with functional uncertainties can be consistently designed using probabilistic control methods. In this paper a generalised probabilistic controller design for the minimisation of the Kullback-Leibler divergence between the actual joint probability density function (pdf) of the closed loop control system, and an ideal joint pdf is presented emphasising how the uncertainty can be systematically incorporated in the absence of reliable systems models. To achieve this objective all probabilistic models of the system are estimated from process data using mixture density networks (MDNs) where all the parameters of the estimated pdfs are taken to be state and control input dependent. Based on this dependency of the density parameters on the input values, explicit formulations to the construction of optimal generalised probabilistic controllers are obtained through the techniques of dynamic programming and adaptive critic methods. Using the proposed generalised probabilistic controller, the conditional joint pdfs can be made to follow the ideal ones. A simulation example is used to demonstrate the implementation of the algorithm and encouraging results are obtained.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We introduce a general technique how to reveal in experiments of limited electrical bandwidth which is lower than the optical bandwidth of the optical signal under study, whether the statistical properties of the light source obey Gaussian distribution or mode correlations do exist. To do that one needs to perform measurements by decreasing the measurement bandwidth. We develop a simple model of bandwidth-limited measurements and predict universal laws how intensity probability density function and intensity auto-correlation function of ideal completely stochastic source of Gaussian statistics depend on limited measurement bandwidth and measurement noise level. Results of experimental investigation are in good agreement with model predictions. In particular, we reveal partial mode correlations in the radiation of quasi-CW Raman fibre laser.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present paper we numerically study instrumental impact on statistical properties of quasi-CW Raman fiber laser using a simple model of multimode laser radiation. Effects, that have the most influence, are limited electrical bandwidth of measurement equipment and noise. To check this influence, we developed a simple model of the multimode quasi- CW generation with exponential statistics (i.e. uncorrelated modes). We found that the area near zero intensity in probability density function (PDF) is strongly affected by both factors, for example both lead to formation of a negative wing of intensity distribution. But far wing slope of PDF is not affected by noise and, for moderate mismatch between optical and electrical bandwidth, is only slightly affected by bandwidth limitation. The generation spectrum often becomes broader at higher power in experiments, so the spectral/electrical bandwidth mismatch factor increases over the power that can lead to artificial dependence of the PDF slope over the power. It was also found that both effects influence the ACF background level: noise impact decreases it, while limited bandwidth leads to its increase. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.