893 resultados para Print on demand
Resumo:
Technological progress is determined, to a great extent, by developments in material science. Breakthroughs can happen when a new type of material or new combinations of known materials with different dimensionality and functionality are created. Multilayered structures, being planar or concentric, are now emerging as major players at the forefront of research. Raman spectroscopy is a well-established characterization technique for carbon nanomaterials and is being developed for layered materials. In this issue of ACS Nano, Hirschmann et al. investigate triple-wall carbon nanotubes via resonant Raman spectroscopy, showing how a wealth of information can be derived about these complex structures. The next challenge is to tackle hybrid heterostructures, consisting of different planar or concentric materials, arranged "on demand" to achieve targeted properties.
Resumo:
This paper reviews recent advances in superradiant (SR) emission in semiconductors at room temperature, a process which has been shown to enable the generation on demand of high power picosecond or subpicosecond pulses across a range of different wavelengths. The different characteristic features of SR emission from semiconductor devices with bulk, quantum-well, and quantum-dot active regions are outlined, and particular emphasis is placed on comparing the characteristic features of SR with those of lasing. Finally, potential applications of SR pulses are discussed. © 1995-2012 IEEE.
Resumo:
The on-demand availability of nanomaterials with selected size and well-defined chemical/physical properties is of fundamental importance for their widespread application. We report two clean, rapid, and non-destructive approaches for nanoparticle (NP) size selection in centrifugal fields. The first exploits rate zonal separation in a high viscosity gradient. The second exploits selective sedimentation of NPs with different sizes. These methods are here applied to metallic nanoparticles (MNPs) with different compositions and surface chemistry, dispersed either in water or organic solvents. The approach is general and can also be exploited for the separation of NPs of any material. We selectively sort both Au and AgNPs with sizes in the 10-30 nm range, achieving chemical-free MNPs with low polydispersivity. We do not use solutes, thus avoiding contamination, and only require low centrifugal fields, easily achievable in benchtop systems. © 2013 American Chemical Society.
Resumo:
The aerodynamic design of turbomachinery presents the design optimisation community with a number of exquisite challenges. Chief among these are the size of the design space and the extent of discontinuity therein. This discontinuity can serve to limit the full exploitation of high-fidelity computational fluid dynamics (CFD): such codes require detailed geometric information often available only sometime after the basic configuration of the machine has been set by other means. The premise of this paper is that it should be possible to produce higher performing designs in less time by exploiting multi-fidelity techniques to effectively harness CFD earlier in the design process, specifically by facilitating its participation in configuration selection. The adopted strategy of local multi-fidelity correction, generated on demand, combined with a global search algorithm via an adaptive trust region is first tested on a modest, smooth external aerodynamic problem. Speed-up of an order of magnitude is demonstrated, comparable to established techniques applied to smooth problems. A number of enhancements aimed principally at effectively evaluating a wide range of configurations quickly is then applied to the basic strategy, and the emerging technique is tested on a generic aeroengine core compression system. A similar order of magnitude speed-up is achieved on this relatively large and highly discontinuous problem. A five-fold increase in the number of configurations assessed with CFD is observed. As the technique places constraints neither on the underlying physical modelling of the constituent analysis codes nor on first-order agreement between those codes, it has potential applicability to a range of multidisciplinary design challenges. © 2012 by Jerome Jarrett and Tiziano Ghisu.
Resumo:
High power bandwidth-limited picosecond pulses with peak powers in excess of 200 mW have been generated using multi-contact distributed feedback laser diodes for the first time. The pulses have widths typically less than 10 ps, time-bandwidth products of as little as 0·24, and can be generated on demand at generator limited repetition rates of up to 140 MHz.
Resumo:
Inkjet printing relies on the formation of small liquid droplets to deliver precise amounts of material to a substrate under digital control. Inkjet technology is becoming relatively mature and is of great industrial interest thanks to its flexibility for graphical printing and its potential use in less conventional applications such as additive manufacturing and the production of printed electronics and other functional devices. Its advantages over traditional methods of printing include the following: it produces little or no waste, it is versatile because several different methods exist, it is noncontact, and it does not require a master template so that printed patterns can be readily modified on demand. However, the technology is in need of further development to become mainstream in emerging applications such as additive manufacturing (3D printing). This review contains a description of conventional and less common inkjet methods and surveys the current applications of inkjet in industry. This is followed by specific examples of the barriers, limitations, and challenges faced by inkjet technology in both graphical printing and manufacturing. © 2013 by Begell House, Inc.
Resumo:
Superradiant emission pulses from a quantum-dot tapered device are generated on demand at repetition rates of up to 5 MHz. The pulses have durations as short as 320 fs at a wavelength of 1270 nm. © 2010 Optical Society of America.
Resumo:
In this paper, a low-complexity soft-output QRD-M detection algorithm is proposed for high-throughput Multiple-input multiple-output (MIMO) systems. By employing novel expansion on demand and distributed sorting scheme, the proposed algorithm can reduce 70% and 85% foundational operations for 16-QAM and 64-QAM respectively compared to the conventional QRD-M algorithm. Furthermore, the proposed algorithm can yield soft information to improve the bit error rate (BER) performance. Simulation results show that the proposed algorithm can achieve a near-NIL detection performance with less foundational operations
Resumo:
利用Java媒体框架(JMF)开发的视频点播系统具有开发简单、跨平台、提供QoS保证和交互性好等优点,具有广泛的应用前景.介绍了JMF应用编程接口的特点和结构,阐述了基于JMF开发的跨平台的视频点播系统的整体结构设计,并详细介绍了基于RTP的实时媒体传输、基于RTCP的拥塞控制、完整VCR操作和穿越NAT等关键技术的具体实现.
Resumo:
这台显示器是根据某电力系统计算机控制的要求而设计的.本文简要介绍了设计特点及其在电力系统中实际应用的情况.本文介绍的监控显示器适用于工业过程控制.作者根据现场应用的经验,提出了研制工业监控显示器的一些想法.
Resumo:
We consider a Delay Tolerant Network (DTN) whose users (nodes) are connected by an underlying Mobile Ad hoc Network (MANET) substrate. Users can declaratively express high-level policy constraints on how "content" should be routed. For example, content may be diverted through an intermediary DTN node for the purposes of preprocessing, authentication, etc. To support such capability, we implement Predicate Routing [7] where high-level constraints of DTN nodes are mapped into low-level routing predicates at the MANET level. Our testbed uses a Linux system architecture and leverages User Mode Linux [2] to emulate every node running a DTN Reference Implementation code [5]. In our initial prototype, we use the On Demand Distance Vector (AODV) MANET routing protocol. We use the network simulator ns-2 (ns-emulation version) to simulate the mobility and wireless connectivity of both DTN and MANET nodes. We show preliminary throughput results showing the efficient and correct operation of propagating routing predicates, and as a side effect, the performance benefit of content re-routing that dynamically (on-demand) breaks the underlying end-to-end TCP connection into shorter-length TCP connections.
Resumo:
We consider a Delay Tolerant Network (DTN) whose users (nodes) are connected by an underlying Mobile Ad hoc Network (MANET) substrate. Users can declaratively express high-level policy constraints on how “content” should be routed. For example, content can be directed through an intermediary DTN node for the purposes of preprocessing, authentication, etc., or content from a malicious MANET node can be dropped. To support such content routing at the DTN level, we implement Predicate Routing [1] where high-level constraints of DTN nodes are mapped into low-level routing predicates within the MANET nodes. Our testbed [2] uses a Linux system architecture with User Mode Linux [3] to emulate every DTN node with a DTN Reference Implementation code [4]. In our initial architecture prototype, we use the On Demand Distance Vector (AODV) routing protocol at the MANET level. We use the network simulator ns-2 (ns-emulation version) to simulate the wireless connectivity of both DTN and MANET nodes. Preliminary results show the efficient and correct operation of propagating routing predicates. For the application of content re-routing through an intermediary, as a side effect, results demonstrate the performance benefit of content re-routing that dynamically (on-demand) breaks the underlying end-to-end TCP connections into shorter-length TCP connections.
Resumo:
The TCP/IP architecture was originally designed without taking security measures into consideration. Over the years, it has been subjected to many attacks, which has led to many patches to counter them. Our investigations into the fundamental principles of networking have shown that carefully following an abstract model of Interprocess Communication (IPC) addresses many problems [1]. Guided by this IPC principle, we designed a clean-slate Recursive INternet Architecture (RINA) [2]. In this paper, we show how, without the aid of cryptographic techniques, the bare-bones architecture of RINA can resist most of the security attacks faced by TCP/IP. We also show how hard it is for an intruder to compromise RINA. Then, we show how RINA inherently supports security policies in a more manageable, on-demand basis, in contrast to the rigid, piecemeal approach of TCP/IP.
Resumo:
High volumes of data traffic along with bandwidth hungry applications, such as cloud computing and video on demand, is driving the core optical communication links closer and closer to their maximum capacity. The research community has clearly identifying the coming approach of the nonlinear Shannon limit for standard single mode fibre [1,2]. It is in this context that the work on modulation formats, contained in Chapter 3 of this thesis, was undertaken. The work investigates the proposed energy-efficient four-dimensional modulation formats. The work begins by studying a new visualisation technique for four dimensional modulation formats, akin to constellation diagrams. The work then carries out one of the first implementations of one such modulation format, polarisation-switched quadrature phase-shift keying (PS-QPSK). This thesis also studies two potential next-generation fibres, few-mode and hollow-core photonic band-gap fibre. Chapter 4 studies ways to experimentally quantify the nonlinearities in few-mode fibre and assess the potential benefits and limitations of such fibres. It carries out detailed experiments to measure the effects of stimulated Brillouin scattering, self-phase modulation and four-wave mixing and compares the results to numerical models, along with capacity limit calculations. Chapter 5 investigates hollow-core photonic band-gap fibre, where such fibres are predicted to have a low-loss minima at a wavelength of 2μm. To benefit from this potential low loss window requires the development of telecoms grade subsystems and components. The chapter will outline some of the development and characterisation of these components. The world's first wavelength division multiplexed (WDM) subsystem directly implemented at 2μm is presented along with WDM transmission over hollow-core photonic band-gap fibre at 2μm. References: [1]P. P. Mitra, J. B. Stark, Nature, 411, 1027-1030, 2001 [2] A. D. Ellis et al., JLT, 28, 423-433, 2010.
Resumo:
Scheduling a set of jobs over a collection of machines to optimize a certain quality-of-service measure is one of the most important research topics in both computer science theory and practice. In this thesis, we design algorithms that optimize {\em flow-time} (or delay) of jobs for scheduling problems that arise in a wide range of applications. We consider the classical model of unrelated machine scheduling and resolve several long standing open problems; we introduce new models that capture the novel algorithmic challenges in scheduling jobs in data centers or large clusters; we study the effect of selfish behavior in distributed and decentralized environments; we design algorithms that strive to balance the energy consumption and performance.
The technically interesting aspect of our work is the surprising connections we establish between approximation and online algorithms, economics, game theory, and queuing theory. It is the interplay of ideas from these different areas that lies at the heart of most of the algorithms presented in this thesis.
The main contributions of the thesis can be placed in one of the following categories.
1. Classical Unrelated Machine Scheduling: We give the first polygorithmic approximation algorithms for minimizing the average flow-time and minimizing the maximum flow-time in the offline setting. In the online and non-clairvoyant setting, we design the first non-clairvoyant algorithm for minimizing the weighted flow-time in the resource augmentation model. Our work introduces iterated rounding technique for the offline flow-time optimization, and gives the first framework to analyze non-clairvoyant algorithms for unrelated machines.
2. Polytope Scheduling Problem: To capture the multidimensional nature of the scheduling problems that arise in practice, we introduce Polytope Scheduling Problem (\psp). The \psp problem generalizes almost all classical scheduling models, and also captures hitherto unstudied scheduling problems such as routing multi-commodity flows, routing multicast (video-on-demand) trees, and multi-dimensional resource allocation. We design several competitive algorithms for the \psp problem and its variants for the objectives of minimizing the flow-time and completion time. Our work establishes many interesting connections between scheduling and market equilibrium concepts, fairness and non-clairvoyant scheduling, and queuing theoretic notion of stability and resource augmentation analysis.
3. Energy Efficient Scheduling: We give the first non-clairvoyant algorithm for minimizing the total flow-time + energy in the online and resource augmentation model for the most general setting of unrelated machines.
4. Selfish Scheduling: We study the effect of selfish behavior in scheduling and routing problems. We define a fairness index for scheduling policies called {\em bounded stretch}, and show that for the objective of minimizing the average (weighted) completion time, policies with small stretch lead to equilibrium outcomes with small price of anarchy. Our work gives the first linear/ convex programming duality based framework to bound the price of anarchy for general equilibrium concepts such as coarse correlated equilibrium.