992 resultados para Primate Cerebral-cortex


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have performed immunocytochemistry on rat brains using a highly specific antiserum directed against the originally described form of the glutamate transporter GLT-1 (referred to hereafter as GLT-1alpha), and another against a C-terminal splice variant of this protein, GLT-1B. Both forms of GLT-1 were abundant in rat brain, especially in regions such as the hippocampus and cerebral cortex, and macroscopic examination of sections suggested that both forms were generally regionally coexistent. However, disparities were evident; GLT-1alpha was present in the intermediate lobe of the pituitary gland, whereas GLT-1B was absent. Similar marked disparities were also noted in the external capsule, where GLT1A labeling was abundant but GLT-1B was only occasionally encountered. Conversely, GLT-1B was more extensively distributed, relative to GLT-1alpha, in areas such as the deep cerebellar nuclei. In most regions, such as the olfactory bulbs, both splice variants were present but differences were evident in their distribution. In cerebral cortex, patches were evident where GLT-1B was absent, whereas no such patches were evident for GLT-1alpha. At high resolution, other discrepancies were evident; double-labeling of areas such as hippocampus indicated that the. two splice variants may either be differentially expressed by closely apposed glial elements or that the two splice variants may be differentially targeted to distinct membrane domains of individual glial cells. (C) 2002 Wiley-Liss, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The apparent L-[H-3]glutamate uptake rate (v') was measured in synaptic vesicles isolated from cerebral cortex synaptosomes prepared from autopsied Alzheimer and non-Alzheimer dementia cases, and age-matched controls. The initial synaptosome preparations exhibited similar densities of D-[H-3]aspartate membrane binding sites (B-MAX values) in the three groups. In control brain the temporal cortex D-[H-3]aspartate B-MAX was 132% of that in motor cortex, parallel with the L- [H-3]glutamate v' values (temporal = 139% of motor; NS). Unlike D- [H-3]aspartate B-MAX values, L- [H-3]glutamate v' values were markedly and selectively lower in Alzheimer brain preparations than in controls, particularly in temporal cortex. The difference could not be attributed to differential effects of autopsy interval or age at death. Non-Alzheimer dementia cases resembled controls. The selective loss of vesicular glutamate transport is consistent with a dysfunction in the recycling of transmitter glutamate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Undemutrition during early life is known to cause deficits and distortions of brain structure although it has remained uncertain whether or not this includes a diminution of the total numbers of neurons. Estimates of numerical density (e.g. number of cells per microscopic field, or number of cells per unit area of section, or number of cells per unit volume of tissue) are extremely difficult to interpret and do not provide estimates of total numbers of cells. However, advances in stereological techniques have made it possible to obtain unbiased estimates of total numbers of cells in well defined biological structures. These methods have been utilised in studies to determine the effects of varying periods of undernutrition during early life on the numbers of neurons in various regions of the rat brain. The regions examined so far have included the cerebellum, the dentate gyrus, the olfactory bulbs and the cerebral cortex. The only region to show, unequivocally, that a period of undernutrition during early life causes a deficit in the number of neurons was the dentate gyrus. These findings are discussed in the context of other morphological and functional deficits present in undernourished animals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mental retardation in individuals with Down syndrome (DS) is thought to result from anomalous development and function of the brain; however, the underlying neuropathological processes have yet to be determined. Early implementation of special care programs result in limited, and temporary, cognitive improvements in DS individuals. In the present study, we investigated the possible neural correlates of these limited improvements. More specifically, we studied cortical pyramidal cells in the frontal cortex of Ts65Dn mice, a partial trisomy of murine chromosome 16 (MMU16) model characterized by cognitive deficits, hyperactivity, behavioral disruption and reduced attention levels similar to those observed in DS, and their control littermates. Animals were raised either in a standard or in an enriched environment. Environmental enrichment had a marked effect on pyramidal cell structure in control animals. Pyramidal cells in environmentally enriched control animals were significantly more branched and more spinous than non-enriched controls. However, environmental enrichment had little effect on pyramidal cell structure in Ts65Dn mice. As each dendritic spine receives at least one excitatory input, differences in the number of spines found in the dendritic arbors of pyramidal cells in the two groups reflect differences in the number of excitatory inputs they receive and, consequently, complexity in cortical circuitry. The present results suggest that behavioral deficits demonstrated in the Ts65Dn model could be attributed to abnormal circuit development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Occipital lobe epilepsy (OLE) presents in childhood with different manifestations, age of onset and EEG features that form distinct syndromes. The ictal clinical symptoms are difficult to correlate with onset in particular areas in the occipital lobes, and the EEG recordings have not been able to overcome this limitation. The mapping of epileptogenic cortical regions in OLE remains therefore an important goal in our understanding of these syndromes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report two cases of a peculiar leukoencephalopathy with temporal cysts. Both patients have a non-progressive neurological disorder with mental retardation, microcephaly and sensorineural deafness although clinical differences between them may reflect a different aetiology. The metabolic disorders with white matter involvement and the recently described leukoencephalopathies (Van Der Knaap disease, 'vanishing white matter disease') were excluded based on clinical, biologic and imaging findings. Cytomegalovirus infection is a likely possibility in the first case although the magnetic resonance imaging picture is only partially similar to previously reported cases. Our patients are strikingly similar to the patients reported by Deonna et al. and Olivier et al. We discuss the clinical and imaging findings in our patients and the differential diagnosis considering the known disorders of the white matter in childhood.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Glutamate and the N-methyl-D-aspartate receptor ligand D-serine are putative gliotransmitters. Here, we show by immunogold cytochemistry of the adult hippocampus that glutamate and D-serine accumulate in synaptic-like microvesicles (SLMVs) in the perisynaptic processes of astrocytes. The estimated concentration of fixed glutamate in the astrocytic SLMVs is comparable to that in synaptic vesicles of excitatory nerve terminals (∼45 and ∼55 mM, respectively), whereas the D-serine level is about 6 mM. The vesicles are organized in small spaced clusters located near the astrocytic plasma membrane. Endoplasmic reticulum is regularly found in close vicinity to SLMVs, suggesting that astrocytes contain functional nanodomains, where a local Ca(2+) increase can trigger release of glutamate and/or D-serine.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Major outputs of the neocortex are conveyed by corticothalamic axons (CTAs), which form reciprocal connections with thalamocortical axons, and corticosubcerebral axons (CSAs) headed to more caudal parts of the nervous system. Previous findings establish that transcriptional programs define cortical neuron identity and suggest that CTAs and thalamic axons may guide each other, but the mechanisms governing CTA versus CSA pathfinding remain elusive. Here, we show that thalamocortical axons are required to guide pioneer CTAs away from a default CSA-like trajectory. This process relies on a hold in the progression of cortical axons, or waiting period, during which thalamic projections navigate toward cortical axons. At the molecular level, Sema3E/PlexinD1 signaling in pioneer cortical neurons mediates a "waiting signal" required to orchestrate the mandatory meeting with reciprocal thalamic axons. Our study reveals that temporal control of axonal progression contributes to spatial pathfinding of cortical projections and opens perspectives on brain wiring.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Previous studies have demonstrated that a region in the left ventral occipito-temporal (LvOT) cortex is highly selective to the visual forms of written words and objects relative to closely matched visual stimuli. Here, we investigated why LvOT activation is not higher for reading than picture naming even though written words and pictures of objects have grossly different visual forms. To compare neuronal responses for words and pictures within the same LvOT area, we used functional magnetic resonance imaging adaptation and instructed participants to name target stimuli that followed briefly presented masked primes that were either presented in the same stimulus type as the target (word-word, picture-picture) or a different stimulus type (picture-word, word-picture). We found that activation throughout posterior and anterior parts of LvOT was reduced when the prime had the same name/response as the target irrespective of whether the prime-target relationship was within or between stimulus type. As posterior LvOT is a visual form processing area, and there was no visual form similarity between different stimulus types, we suggest that our results indicate automatic top-down influences from pictures to words and words to pictures. This novel perspective motivates further investigation of the functional properties of this intriguing region.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Parvalbumin-immunoreactive interneurons are surrounded by perineuronal nets, containing molecules of the extracellular matrix (e.g. tenascin-R). Furthermore, they seem to have a special cytoskeleton composed of, among others, ankyrinR and beta Rspectrin. In the present developmental study we showed that the intracellular markers parvalbumin, ankyrinR and beta Rspectrin as well as Vicia Villosa agglutinin, an extracellular marker for perineuronal nets, appeared in the second postnatal week. In the third postnatal week, ankyrinR and beta R spectrin were present in the parvalbumin-positive interneurons. Tenascin-R appeared in a similar topographic distribution as the intracellular markers. The adult pattern was established upon the end of the fourth postnatal week. Our results indicate that cytoskeletal maturity maybe a prerequisite for the organization of perineuronal nets of extracellular matrix.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using event-related potentials (ERPs), we investigated the neural response associated with preparing to switch from one task to another. We used a cued task-switching paradigm in which the interval between the cue and the imperative stimulus was varied. The difference between response time (RT) to trials on which the task switched and trials on which the task repeated (switch cost) decreased as the interval between cue and target (CTI) was increased, demonstrating that subjects used the CTI to prepare for the forthcoming task. However, the RT on repeated-task trials in blocks during which the task could switch (mixed-task blocks) were never as short as RTs during single-task blocks (mixing cost). This replicates previous research. The ERPs in response to the cue were compared across three conditions: single-task trials, switch trials, and repeat trials. ERP topographic differences were found between single-task trials and mixed-task (switch and repeat) trials at approximately 160 and approximately 310 msec after the cue, indicative of changes in the underlying neural generator configuration as a basis for the mixing cost. In contrast, there were no topographic differences evident between switch and repeat trials during the CTI. Rather, the response of statistically indistinguishable generator configurations was stronger at approximately 310 msec on switch than on repeat trials. By separating differences in ERP topography from differences in response strength, these results suggest that a reappraisal of previous research is appropriate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The progressive development of Alzheimer's disease (AD)-related lesions such as neurofibrillary tangles,amyloid deposits and synaptic loss within the cerebral cortex is a main event of brain aging.Recent neuropathologic studies strongly suggested that the clinical diagnosis of dementia depends more on the severity and topography of pathologic changes than on the presence of a qualitative marker. However, several methodological problems such as selection biases, case-control design,density-based measures, and masking effects of concomitant pathologies should be taken into account when interpreting these data. In last years, the use of stereologic counting permitted to define reliably the cognitive impact of AD lesions in the human brain. Unlike fibrillar amyloid deposits that are poorly or not related to the dementia severity, the use of this method documented that total neurofibrillary tangles and neuron numbers in the CA1 field are the best correlates of cognitive deterioration in brain aging. Loss of dendritic spines in neocortical but not hippocampal areas has a modest but independent contribution to dementia. In contrast, the importance of early dendritic and axonal tau-related pathologic changes such as neuropil threads remains doubtful. Despite these progresses, neuronal pathology and synaptic loss in cases with pure AD pathology cannot explain more than 50% of clinical severity. The present review discusses the complex structure/function relationships in brain aging and AD within the theoretical framework of the functional neuropathology of brain aging.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Immunocompetent microglia play an important role in the pathogenesis of Alzheimer's disease (AD). Antimicroglial antibodies in the cerebrospinal fluid (CSF) in clinically diagnosed AD patients have been previously recorded. Here, we report the results of the analysis of the CSF from 38 autopsy cases: 7 with definite AD; 14 with mild and 10 with moderate Alzheimer's type pathology; and 7 controls. Antimicroglial antibodies were identified in 70% of patients with definite AD, in 80% of patients with moderate and in 28% of patients with mild Alzheimer's type pathology. CSF antimicroglial antibodies were not observed in any of the control cases. The results show that CSF antimicroglial antibodies are present in the majority of patients with definite AD and also in cases with moderate Alzheimer's type changes. They may also indicate dysregulation of microglial function. Together with previous observations, these findings indicate that compromised immune defense mechanisms play an important role in the pathogenesis of AD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There has been broad concern that arsenic in the environment exerts neurotoxicity. To determine the mechanism by which arsenic disrupts neuronal development, primary cultured neurons obtained from the cerebral cortex of mouse embryos were exposed to sodium arsenite (NaAsO2) at concentrations between 0 and 2μM from days 2 to 4 in vitro and cell survival, neurite outgrowth and expression of glutamate AMPA receptor subunits were assessed at day 4 in vitro. Cell survival was significantly decreased by exposure to 2μM NaAsO2, whereas 0.5μM NaAsO2 increased cell survival instead. The assessment of neurite outgrowth showed that total neurite length was significantly suppressed by 1μM and 2μM NaAsO2, indicating that the lower concentration of NaAsO2 impairs neuritogenesis before inducing cell death. Immunoblot analysis of AMPA receptor subunit expression showed that the protein level of GluA1, a specific subunit of the AMPA receptor, was significantly decreased by 1μM and 2μM NaAsO2. When immunocytochemistry was used to confirm this effect by staining for GluA1 expression in neuropeptide Y neurons, most of which contain GluA1, GluA1 expression in neuropeptide Y neurons was found to be significantly suppressed by 1μM and 2μM NaAsO2 but to be increased at the concentration of 0.5μM. Finally, to determine whether neurons could be rescued from the NaAsO2-induced impairment of neuritogenesis by compensatory overexpression of GluA1, we used primary cultures of neurons transfected with a plasmid vector to overexpress either GluA1 or GluA2, and the results showed that GluA1/2 overexpression protected against the deleterious effects of NaAsO2 on neurite outgrowth. These results suggest that the NaAsO2 concentration inducing neurite suppression is lower than the concentration that induces cell death and is the same as the concentration that suppresses GluA1 expression. Consequently, the suppression of GluA1 expression by NaAsO2 seems at least partly responsible for neurite suppression induced by NaAsO2.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Techniques for cerebral hemispherectomy have progressively evolved towards more disconnection and less excision over the last 50 years. Peri-insular hemispherotomy (PIH), as described by the senior author, has the maximal ratio of disconnection to excision among all procedures for hemispheric epilepsy. In this study, we focus on surgical complications and intraoperative anatomical observations during PIH over the last 10 years. Based on this experience, the procedure has undergone some modifications, which we detail herein.