879 resultados para Predictive regression


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a distributed model predictive control (DMPC) for indoor thermal comfort that simultaneously optimizes the consumption of a limited shared energy resource. The control objective of each subsystem is to minimize the heating/cooling energy cost while maintaining the indoor temperature and used power inside bounds. In a distributed coordinated environment, the control uses multiple dynamically decoupled agents (one for each subsystem/house) aiming to achieve satisfaction of coupling constraints. According to the hourly power demand profile, each house assigns a priority level that indicates how much is willing to bid in auction for consume the limited clean resource. This procedure allows the bidding value vary hourly and consequently, the agents order to access to the clean energy also varies. Despite of power constraints, all houses have also thermal comfort constraints that must be fulfilled. The system is simulated with several houses in a distributed environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de Mestrado, Estudos Integrados dos Oceanos, 25 de Março de 2013, Universidade dos Açores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copyright: © 2014 Aranda et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a 3D-2D image registration method that relates image features of 2D projection images to the transformation parameters of the 3D image by nonlinear regression. The method is compared with a conventional registration method based on iterative optimization. For evaluation, simulated X-ray images (DRRs) were generated from coronary artery tree models derived from 3D CTA scans. Registration of nine vessel trees was performed, and the alignment quality was measured by the mean target registration error (mTRE). The regression approach was shown to be slightly less accurate, but much more robust than the method based on an iterative optimization approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To assess a new impunity index and variables that have been found to predict variation in homicide rates in other geographical levels as predictive of state-level homicide rates in Brazil. METHODS: This was a cross-sectional ecological study. Data from the mortality information system relating to the 27 Brazilian states for the years 1996 to 2005 were analyzed. The outcome variables were taken to be homicide victim rates in 2005, for the entire population and for men aged 20-29 years. Measurements of economic and social development, economic inequality, demographic structure and life expectancy were analyzed as predictors. An "impunity index", calculated as the total number of homicides between 1996 and 2005 divided by the number of individuals in prison in 2007, was constructed. The data were analyzed by means of simple linear regression and negative binomial regression. RESULTS: In 2005, state-level crude total homicide rates ranged from 11 to 51 per 100,000; for young men, they ranged from 39 to 241. The impunity index ranged from 0.4 to 3.5 and was the most important predictor of this variability. From negative binomial regression, it was estimated that the homicide victim rate among young males increased by 50% for every increase of one point in this ratio. CONCLUSIONS: Classic predictive factors were not associated with homicides in this analysis of state-level variation in Brazil. However, the impunity index indicated that the greater the impunity, the higher the homicide rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To analyze the impact on human health of exposure to particulate matter emitted from burnings in the Brazilian Amazon region. METHODS: This was an ecological study using an environmental exposure indicator presented as the percentage of annual hours (AH%) of PM2.5 above 80 μg/m3. The outcome variables were the rates of hospitalization due to respiratory disease among children, the elderly and the intermediate age group, and due to childbirth. Data were obtained from the National Space Research Institute and the Ministry of Health for all of the microregions of the Brazilian Amazon region, for the years 2004 and 2005. Multiple regression models for the outcome variables in relation to the predictive variable AH% of PM2.5 above 80 μg/m3 were analyzed. The Human Development Index (HDI) and mean number of complete blood counts per 100 inhabitants in the Brazilian Amazon region were the control variables in the regression analyses. RESULTS: The association of the exposure indicator (AH%) was higher for the elderly than for other age groups (β = 0.10). For each 1% increase in the exposure indicator there was an increase of 8% in child hospitalization, 10% in hospitalization of the elderly, and 5% for the intermediate age group, even after controlling for HDI and mean number of complete blood counts. No association was found between the AH% and hospitalization due to childbirth. CONCLUSIONS: The indicator of atmospheric pollution showed an association with occurrences of respiratory diseases in the Brazilian Amazon region, especially in the more vulnerable age groups. This indicator may be used to assess the effects of forest burning on human health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amulti-residue methodology based on a solid phase extraction followed by gas chromatography–tandem mass spectrometry was developed for trace analysis of 32 compounds in water matrices, including estrogens and several pesticides from different chemical families, some of them with endocrine disrupting properties. Matrix standard calibration solutions were prepared by adding known amounts of the analytes to a residue-free sample to compensate matrix-induced chromatographic response enhancement observed for certain pesticides. Validation was done mainly according to the International Conference on Harmonisation recommendations, as well as some European and American validation guidelines with specifications for pesticides analysis and/or GC–MS methodology. As the assumption of homoscedasticity was not met for analytical data, weighted least squares linear regression procedure was applied as a simple and effective way to counteract the greater influence of the greater concentrations on the fitted regression line, improving accuracy at the lower end of the calibration curve. The method was considered validated for 31 compounds after consistent evaluation of the key analytical parameters: specificity, linearity, limit of detection and quantification, range, precision, accuracy, extraction efficiency, stability and robustness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new predictive digital control method applied to Matrix Converters (MC) operating as Unified Power Flow Controllers (UPFC). This control method, based on the inverse dynamics model equations of the MC operating as UPFC, just needs to compute the optimal control vector once in each control cycle, in contrast to direct dynamics predictive methods that needs 27 vector calculations. The theoretical principles of the inverse dynamics power flow predictive control of the MC based UPFC with input filter are established. The proposed inverse dynamics predictive power control method is tested using Matlab/Simulink Power Systems toolbox and the obtained results show that the designed power controllers guarantees decoupled active and reactive power control, zero error tracking, fast response times and an overall good dynamic and steady-state response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE To analyze the prevalence of individuals at risk of dependence and its associated factors.METHODS The study was based on data from the Catalan Health Survey, Spain conducted in 2010 and 2011. Logistic regression models from a random sample of 3,842 individuals aged ≥ 15 years were used to classify individuals according to the state of their personal autonomy. Predictive models were proposed to identify indicators that helped distinguish dependent individuals from those at risk of dependence. Variables on health status, social support, and lifestyles were considered.RESULTS We found that 18.6% of the population presented a risk of dependence, especially after age 65. Compared with this group, individuals who reported dependence (11.0%) had difficulties performing activities of daily living and had to receive support to perform them. Habits such as smoking, excessive alcohol consumption, and being sedentary were associated with a higher probability of dependence, particularly for women.CONCLUSIONS Difficulties in carrying out activities of daily living precede the onset of dependence. Preserving personal autonomy and function without receiving support appear to be a preventive factor. Adopting an active and healthy lifestyle helps reduce the risk of dependence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A serologic study was undertaken in a group of 43 patients with active paracoccidioidomycosis who were treated in the same form (ketoconazole), for identical periods of time (6 months), and folio wed-up for various periods posttherapy. The tests employed were agar gel immunodiffusion (AGID) and complement fixation (FC). Also studied were 50 sera from patients with proven histoplasmosis and pulmonary aspergilloma, 30 patients with culturaly proven tuberculosis as well as 92 specimens from healthy individuals, residents in the endemic area for paracoccidioidomycosis. A single lot of yeast filtrate antigen was used throughout the study. The value of each test was measured according to GALEN and GAMBINO6. Both tests were highly sensitive, 89 and 93% respectively. Regarding their specificity, the AGID was totally specific while the CF exhibited 96.6% and 97% specificity in front of tuberculosis patients and healthy individuals respectively and 82% in comparison with patients with other mycoses. The concept of predictive value, that is, the certainty one has in accepting a positive test as diagnostic of paracoccidioidomycosis, favored the AGID procedure (100%) over the CF test. The latter could sort out with 93% certainty a patient with paracoccidioidomycosis among a group of healthy individuals and with 97.5% in the case of TB patients; when the group in question was composed by individuals with other deep mycoses, such certainty was lower (81%). The above results indicate that both the AGID and the CF tests furnish results of high confidence; one should not relay, however, in the CF alone as a means to establish the specific diagnosis of paracoccidioidomycosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the implementation of a distributed model predictive approach for automatic generation control. Performance results are discussed by comparing classical techniques (based on integral control) with model predictive control solutions (centralized and distributed) for different operational scenarios with two interconnected networks. These scenarios include variable load levels (ranging from a small to a large unbalance generated power to power consumption ratio) and simultaneously variable distance between the interconnected networks systems. For the two networks the paper also examines the impact of load variation in an island context (a network isolated from each other).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prediction of the time and the efficiency of the remediation of contaminated soils using soil vapor extraction remain a difficult challenge to the scientific community and consultants. This work reports the development of multiple linear regression and artificial neural network models to predict the remediation time and efficiency of soil vapor extractions performed in soils contaminated separately with benzene, toluene, ethylbenzene, xylene, trichloroethylene, and perchloroethylene. The results demonstrated that the artificial neural network approach presents better performances when compared with multiple linear regression models. The artificial neural network model allowed an accurate prediction of remediation time and efficiency based on only soil and pollutants characteristics, and consequently allowing a simple and quick previous evaluation of the process viability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several popular Ansatze of lepton mass matrices that contain texture zeros are confronted with current neutrino observational data. We perform a systematic chi(2) analysis in a wide class of schemes, considering arbitrary Hermitian charged-lepton mass matrices and symmetric mass matrices for Majorana neutrinos or Hermitian mass matrices for Dirac neutrinos. Our study reveals that several patterns are still consistent with all the observations at the 68.27% confidence level, while some others are disfavored or excluded by the experimental data. The well-known Frampton-Glashow-Marfatia two-zero textures, hybrid textures, and parallel structures (among others) are considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of biopharmaceutical manufacturing processes presents critical constraints, with the major constraint being that living cells synthesize these molecules, presenting inherent behavior variability due to their high sensitivity to small fluctuations in the cultivation environment. To speed up the development process and to control this critical manufacturing step, it is relevant to develop high-throughput and in situ monitoring techniques, respectively. Here, high-throughput mid-infrared (MIR) spectral analysis of dehydrated cell pellets and in situ near-infrared (NIR) spectral analysis of the whole culture broth were compared to monitor plasmid production in recombinant Escherichia coil cultures. Good partial least squares (PLS) regression models were built, either based on MIR or NIR spectral data, yielding high coefficients of determination (R-2) and low predictive errors (root mean square error, or RMSE) to estimate host cell growth, plasmid production, carbon source consumption (glucose and glycerol), and by-product acetate production and consumption. The predictive errors for biomass, plasmid, glucose, glycerol, and acetate based on MIR data were 0.7 g/L, 9 mg/L, 0.3 g/L, 0.4 g/L, and 0.4 g/L, respectively, whereas for NIR data the predictive errors obtained were 0.4 g/L, 8 mg/L, 0.3 g/L, 0.2 g/L, and 0.4 g/L, respectively. The models obtained are robust as they are valid for cultivations conducted with different media compositions and with different cultivation strategies (batch and fed-batch). Besides being conducted in situ with a sterilized fiber optic probe, NIR spectroscopy allows building PLS models for estimating plasmid, glucose, and acetate that are as accurate as those obtained from the high-throughput MIR setup, and better models for estimating biomass and glycerol, yielding a decrease in 57 and 50% of the RMSE, respectively, compared to the MIR setup. However, MIR spectroscopy could be a valid alternative in the case of optimization protocols, due to possible space constraints or high costs associated with the use of multi-fiber optic probes for multi-bioreactors. In this case, MIR could be conducted in a high-throughput manner, analyzing hundreds of culture samples in a rapid and automatic mode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiotherapy is one of the main treatments used against cancer. Radiotherapy uses radiation to destroy cancerous cells trying, at the same time, to minimize the damages in healthy tissues. The planning of a radiotherapy treatment is patient dependent, resulting in a lengthy trial and error procedure until a treatment complying as most as possible with the medical prescription is found. Intensity Modulated Radiation Therapy (IMRT) is one technique of radiation treatment that allows the achievement of a high degree of conformity between the area to be treated and the dose absorbed by healthy tissues. Nevertheless, it is still not possible to eliminate completely the potential treatments’ side-effects. In this retrospective study we use the clinical data from patients with head-and-neck cancer treated at the Portuguese Institute of Oncology of Coimbra and explore the possibility of classifying new and untreated patients according to the probability of xerostomia 12 months after the beginning of IMRT treatments by using a logistic regression approach. The results obtained show that the classifier presents a high discriminative ability in predicting the binary response “at risk for xerostomia at 12 months”