965 resultados para Prédiction de kinases
Tyrosine phosphorylation and activation of STAT5, STAT3, and Janus kinases by interleukins 2 and 15.
Resumo:
The cytokines interleukin 2 (IL-2) and IL-15 have similar biological effects on T cells and bind common hematopoietin receptor subunits. Pathways that involve Janus kinases (JAKs) and signal transducers and activators of transcription (STATs) have been shown to be important for hematopoietin receptor signaling. In this study we identify the STAT proteins activated by IL-2 and IL-15 in human T cells. IL-2 and IL-15 rapidly induced the tyrosine phosphorylation of STAT3 and STAT5, and DNA-binding complexes containing STAT3 and STAT5 were rapidly activated by these cytokines in T cells. IL-4 induced tyrosine phosphorylation and activation of STAT3 but not STAT5. JAK1 and JAK3 were tyrosine-phosphorylated in response to IL-2 and IL-15. Hence, the JAK and STAT molecules that are activated in response to IL-2 and IL-15 are similar but differ from those induced by IL-4. These observations identify the STAT proteins activated by IL-2 and IL-15 and therefore define signaling pathways by which these T-cell growth factors may regulate gene transcription.
Resumo:
The Fc gamma receptor-associated gamma and zeta subunits contain a conserved cytoplasmic motif, termed the immunoglobulin gene tyrosine activation motif, which contains a pair of YXXL sequences. The tyrosine residues within these YXXL sequences have been shown to be required for transduction of a phagocytic signal. We have previously reported that the gamma subunit of the type IIIA Fc gamma receptor (Fc gamma RIIIA) is approximately 6 times more efficient in mediating phagocytosis than the zeta subunit of Fc gamma RIIIA. By exchanging regions of the cytoplasmic domains of the homologous gamma and zeta chains, we observed that the cytoplasmic area of the gamma chain bearing a pair of the conserved YXXL sequences is important in phagocytic signaling. Further specificity of phagocytic signaling is largely determined by the two internal XX amino acids in the YXXL sequences. In contrast, the flanking amino acids of the YXXL sequences including the seven intervening amino acids between the two YXXL sequences do not significantly affect the phagocytic signal. Furthermore, the protein-tyrosine kinase Syk, but not the related kinase ZAP-70, stimulated Fc gamma RIIIA-mediated phagocytosis. ZAP-70, however, increased phagocytosis when coexpressed with the Src family kinase Fyn. These data demonstrate the importance of the two specific amino acids within the gamma subunit YXXL cytoplasmic sequences in phagocytic signaling and explain the difference in phagocytic efficiency of the gamma and zeta chains. These results indicate the importance of Syk in Fc gamma RIIIA-mediated phagocytosis and demonstrate that ZAP-70 and syk differ in their requirement for a Src-related kinase in signal transduction.
Resumo:
A number of factors both stimulating and inhibiting angiogenesis have been described. In the current work, we demonstrate that the angiogenic factor vascular endothelial growth factor (VEGF) activates mitogen-activated protein kinase (MAPK) as has been previously shown for basic fibroblast growth factor. The antiagiogenic factor 16-kDa N-terminal fragment of human prolactin inhibits activation of MAPK distal to autophosphorylation of the putative VEGF receptor, Flk-1, and phospholipase C-gamma. These data show that activation and inhibition of MAPK may play a central role in the control of angiogenesis.
Resumo:
We describe a protein kinase, Shk1, from the fission yeast Schizosaccharomyces pombe, which is structurally related to the Saccharomyces cerevisiae Ste20 and mammalian p65PAK protein kinases. We provide genetic evidence for physical and functional interaction between Shk1 and the Cdc42 GTP-binding protein required for normal cell morphology and mating in S. pombe. We further show that expression of the STE20 gene complements the shk1 null mutation and that Shk1 is capable of signaling to the pheromone-responsive mitogen-activated protein kinase cascade in S. cerevisiae. Our results lead us to propose that signaling modules composed of small GTP-binding proteins and protein kinases related to Shk1, Ste20, and p65PAK, are highly conserved in evolution and participate in both cytoskeletal functions and mitogen-activated protein kinase signaling pathways.
Resumo:
Tyrosine phosphorylation of a 17-amino acid immunoreceptor tyrosine-based activation motif (ITAM), conserved in each of the signaling subunits of the T-cell antigen receptor (TCR), mediates the recruitment of ZAP-70 and syk protein-tyrosine kinases (PTKs) to the activated receptor. The interaction between the two tandemly arranged Src-homology 2 (SH2) domains of this family of PTKs and each of the phosphotyrosine-containing ITAMs was examined by real-time measurements of kinetic parameters. The association rate and equilibrium binding constants for the ZAP-70 and syk SH2 domains were determined for the CD3 epsilon ITAM. Both PTKs bound with ka and Kd values of 5 x 10(6) M-1.sec-1 and approximately 25 nM, respectively. Bindings to the other TCR ITAMs (zeta 1, zeta 2, gamma, and delta ITAMs) were comparable, although the zeta 3 ITAM bound approximately 2.5-fold less well. Studies of the affinity of a single functional SH2 domain of ZAP-70 provided evidence for the cooperative nature of binding of the dual SH2 domains. Mutation of either single SH2 domain decreased the Kd by > 100-fold. Finally, the critical features of the ITAM for syk binding were found to be similar to those required for ZAP-70 binding. These data provide insight into the mechanism by which the multisubunit TCR interacts with downstream effector molecules.
Resumo:
Resistance to bacterial speck in tomato is governed by a gene-for-gene interaction in which a single resistance locus (Pto) in the plant responds to the expression of a specific avirulence gene (avrPto) in the pathogen. Disease susceptibility results if either Pto or avrPto are lacking from the corresponding organisms. Leaves of tomato cultivars that contain the Pto locus also exhibit a hypersensitive-like response upon exposure to an organophosphorous insecticide, fenthion. Recently, the Pto gene was isolated by a map-based cloning approach and was shown to be a member of a clustered multigene family with similarity to various protein-serine/threonine kinases. Another member of this family, termed Fen, was found to confer sensitivity to fenthion. The Pto protein shares 80% identity (87% similarity) with Fen. Here, Pto and Fen are shown to be functional protein kinases that probably participate in the same signal transduction pathway.
Resumo:
The large number of protein kinases makes it impractical to determine their specificities and substrates experimentally. Using the available crystal structures, molecular modeling, and sequence analyses of kinases and substrates, we developed a set of rules governing the binding of a heptapeptide substrate motif (surrounding the phosphorylation site) to the kinase and implemented these rules in a web-interfaced program for automated prediction of optimal substrate peptides, taking only the amino acid sequence of a protein kinase as input. We show the utility of the method by analyzing yeast cell cycle control and DNA damage checkpoint pathways. Our method is the only available predictive method generally applicable for identifying possible substrate proteins for protein serine/threonine kinases and helps in silico construction of signaling pathways. The accuracy of prediction is comparable to the accuracy of data from systematic large-scale experimental approaches.
Resumo:
With the completion of the human and mouse genome sequences, the task now turns to identifying their encoded transcripts and assigning gene function. In this study, we have undertaken a computational approach to identify and classify all of the protein kinases and phosphatases present in the mouse gene complement. A nonredundant set of these sequences was produced by mining Ensembl gene predictions and publicly available cDNA sequences with a panel of InterPro domains. This approach identified 561 candidate protein kinases and 162 candidate protein phosphatases. This cohort was then analyzed using TribeMCL protein sequence similarity clustering followed by CLUSTALV alignment and hierarchical tree generation. This approach allowed us to (1) distinguish between true members of the protein kinase and phosphatase families and enzymes of related biochemistry, (2) determine the structure of the families, and (3) suggest functions for previously uncharacterized members. The classifications obtained by this approach were in good agreement with previous schemes and allowed us to demonstrate domain associations with a number of clusters. Finally, we comment on the complementary nature of cDNA and genome-based gene detection and the impact of the FANTOM2 transcriptome project.
Resumo:
To ensure signalling fidelity, kinases must act only on a defined subset of cellular targets. Appreciating the basis for this substrate specificity is essential for understanding the role of an individual protein kinase in a particular cellular process. The specificity in the cell is determined by a combination of peptide specificity of the kinase (the molecular recognition of the sequence surrounding the phosphorylation site), substrate recruitment and phosphatase activity. Peptide specificity plays a crucial role and depends on the complementarity between the kinase and the substrate and therefore on their three-dimensional structures. Methods for experimental identification of kinase substrates and characterization of specificity are expensive and laborious, therefore, computational approaches are being developed to reduce the amount of experimental work required in substrate identification. We discuss the structural basis of substrate specificity of protein kinases and review the experimental and computational methods used to obtain specificity information. (c) 2005 Elsevier B.V. All rights reserved.
PhosphoregDB: The tissue and sub-cellular distribution of mammalian protein kinases and phosphatases
Resumo:
Background: Protein phosphorylation is an extremely important mechanism of cellular regulation. A large-scale study of phosphoproteins in a whole-cell lysate of Saccharomyces cerevisiae has previously identified 383 phosphorylation sites in 216 peptide sequences. However, the protein kinases responsible for the phosphorylation of the identified proteins have not previously been assigned. Results: We used Predikin in combination with other bioinformatic tools, to predict which of 116 unique protein kinases in yeast phosphorylates each experimentally determined site in the phosphoproteome. The prediction was based on the match between the phosphorylated 7-residue sequence and the predicted substrate specificity of each kinase, with the highest weight applied to the residues or positions that contribute most to the substrate specificity. We estimated the reliability of the predictions by performing a parallel prediction on phosphopeptides for which the kinase has been experimentally determined. Conclusion: The results reveal that the functions of the protein kinases and their predicted phosphoprotein substrates are often correlated, for example in endocytosis, cytokinesis, transcription, replication, carbohydrate metabolism and stress response. The predictions link phosphoproteins of unknown function with protein kinases with known functions and vice versa, suggesting functions for the uncharacterized proteins. The study indicates that the phosphoproteins and the associated protein kinases represented in our dataset have housekeeping cellular roles; certain kinases are not represented because they may only be activated during specific cellular responses. Our results demonstrate the utility of our previously reported protein kinase substrate prediction approach (Predikin) as a tool for establishing links between kinases and phosphoproteins that can subsequently be tested experimentally.
Resumo:
The c-Jun N-terminal kinases (JNKs) are members of a larger group of serine/ threonine (Ser/Thr) protein kinases from the mitogen-activated protein kinase family. JNKs were originally identified as stress-activated protein kinases in the livers of cycloheximide-challenged rats. Their subsequent purification, cloning, and naming as JNKs have emphasized their ability to phosphorylate and activate the transcription factor c-Jun. Studies of c-Jun and related transcription factor substrates have provided clues about both the preferred substrate phosphorylation sequences and additional docking domains recognized by JNK There are now more than 50 proteins shown to be substrates for JNK These include a range of nuclear substrates, including transcription factors and nuclear hormone receptors, heterogeneous nuclear ribonucleoprotein K and the Pol I-specific transcription factor TIF-IA, which regulates ribosome synthesis. Many nonnuclear substrates have also been characterized, and these are involved in protein degradation (e.g., the E3 ligase Itch), signal transduction (e.g., adaptor and scaffold proteins and protein kinases), apoptotic cell death (e.g., mitochondrial Bcl2 family members), and cell movement (e.g., paxillin, DCX, microtubule-associated proteins, the stathmin family member SCG10, and the intermediate filament protein keratin 8). The range of JNK actions in the cell is therefore likely to be complex. Further characterization of the substrates of JNK should provide clearer explanations of the intracellular actions of the JNKs and may allow new avenues for targeting the JNK pathways with therapeutic agents downstream of JNK itself.