914 resultados para Power systems simulation
Resumo:
Artificial intelligence techniques are being widely used to face the new reality and to provide solutions that can make power systems undergo all the changes while assuring high quality power. In this way, the agents that act in the power industry are gaining access to a generation of more intelligent applications, making use of a wide set of AI techniques. Knowledge-based systems and decision-support systems have been applied in the power and energy industry. This article is intended to offer an updated overview of the application of artificial intelligence in power systems. This article paper is organized in a way so that readers can easily understand the problems and the adequacy of the proposed solutions. Because of space constraints, this approach can be neither complete nor sufficiently deep to satisfy all readers’ needs. As this is amultidisciplinary area, able to attract both software and computer engineering and power system people, this article tries to give an insight into themost important concepts involved in these applications. Complementary material can be found in the reference list, providing deeper and more specific approaches.
Resumo:
The activity of Control Center operators is important to guarantee the effective performance of Power Systems. Operators’ actions are crucial to deal with incidents, especially severe faults, like blackouts. In this paper we present an Intelligent Tutoring approach for training Portuguese Control Centre operators in tasks like incident analysis and diagnosis, and service restoration of Power Systems. Intelligent Tutoring System (ITS) approach is used in the training of the operators, taking into account context awareness and the unobtrusive integration in the working environment.
Resumo:
Currently, power systems (PS) already accommodate a substantial penetration of distributed generation (DG) and operate in competitive environments. In the future, as the result of the liberalisation and political regulations, PS will have to deal with large-scale integration of DG and other distributed energy resources (DER), such as storage and provide market agents to ensure a flexible and secure operation. This cannot be done with the traditional PS operational tools used today like the quite restricted information systems Supervisory Control and Data Acquisition (SCADA) [1]. The trend to use the local generation in the active operation of the power system requires new solutions for data management system. The relevant standards have been developed separately in the last few years so there is a need to unify them in order to receive a common and interoperable solution. For the distribution operation the CIM models described in the IEC 61968/70 are especially relevant. In Europe dispersed and renewable energy resources (D&RER) are mostly operated without remote control mechanisms and feed the maximal amount of available power into the grid. To improve the network operation performance the idea of virtual power plants (VPP) will become a reality. In the future power generation of D&RER will be scheduled with a high accuracy. In order to realize VPP decentralized energy management, communication facilities are needed that have standardized interfaces and protocols. IEC 61850 is suitable to serve as a general standard for all communication tasks in power systems [2]. The paper deals with international activities and experiences in the implementation of a new data management and communication concept in the distribution system. The difficulties in the coordination of the inconsistent developed in parallel communication and data management standards - are first addressed in the paper. The upcoming unification work taking into account the growing role of D&RER in the PS is shown. It is possible to overcome the lag in current practical experiences using new tools for creating and maintenance the CIM data and simulation of the IEC 61850 protocol – the prototype of which is presented in the paper –. The origin and the accuracy of the data requirements depend on the data use (e.g. operation or planning) so some remarks concerning the definition of the digital interface incorporated in the merging unit idea from the power utility point of view are presented in the paper too. To summarize some required future work has been identified.
Resumo:
Energy Resources Management can play a very relevant role in future power systems in SmartGrid context, with high penetration of distributed generation and storage systems. This paper deals with the importance of resources management in incident situation. The system to consider a high penetration of distributed generation, demand response, storage units and network reconfiguration. A case study evidences the advantages of using a flexible SCADA to control the energy resources in incident situation.
Resumo:
Control Centre operators are essential to assure a good performance of Power Systems. Operators’ actions are critical in dealing with incidents, especially severe faults, like blackouts. In this paper we present an Intelligent Tutoring approach for training Portuguese Control Centre operators in incident analysis and diagnosis, and service restoration of Power Systems, offering context awareness and an easy integration in the working environment.
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia
Resumo:
Renewable energy sources (RES) have unique characteristics that grant them preference in energy and environmental policies. However, considering that the renewable resources are barely controllable and sometimes unpredictable, some challenges are faced when integrating high shares of renewable sources in power systems. In order to mitigate this problem, this paper presents a decision-making methodology regarding renewable investments. The model computes the optimal renewable generation mix from different available technologies (hydro, wind and photovoltaic) that integrates a given share of renewable sources, minimizing residual demand variability, therefore stabilizing the thermal power generation. The model also includes a spatial optimization of wind farms in order to identify the best distribution of wind capacity. This methodology is applied to the Portuguese power system.
Resumo:
As it is well known, competitive electricity markets require new computing tools for generation companies to enhance the management of its resources. The economic value of the water stored in a power system reservoir is crucial information for enhancing the management of the reservoirs. This paper proposes a practical deterministic approach for computing the short-term economic value of the water stored in a power system reservoir, emphasizing the need to considerer water stored as a scarce resource with a short-term economic value. The paper addresses a problem concerning reservoirs with small storage capacities, i.e., the reservoirs considered as head-sensitivity. More precisely, the respective hydro plant is head-dependent and a pure linear approach is unable to capture such consideration. The paper presents a case study supported by the proposed practical deterministic approach and applied on a real multi-reservoir power system with three cascaded reservoirs, considering as input data forecasts for the electric energy price and for the natural inflow into the reservoirs over the schedule time horizon. The paper presents various water schedules due to different final stored water volume conditions on the reservoirs. Also, it presents the respective economic value of the water for the reservoirs at different stored water volume conditions.
Resumo:
This paper presents a new predictive digital control method applied to Matrix Converters (MC) operating as Unified Power Flow Controllers (UPFC). This control method, based on the inverse dynamics model equations of the MC operating as UPFC, just needs to compute the optimal control vector once in each control cycle, in contrast to direct dynamics predictive methods that needs 27 vector calculations. The theoretical principles of the inverse dynamics power flow predictive control of the MC based UPFC with input filter are established. The proposed inverse dynamics predictive power control method is tested using Matlab/Simulink Power Systems toolbox and the obtained results show that the designed power controllers guarantees decoupled active and reactive power control, zero error tracking, fast response times and an overall good dynamic and steady-state response.
Resumo:
Renewable energy sources (RES) have unique characteristics that grant them preference in energy and environmental policies. However, considering that the renewable resources are barely controllable and sometimes unpredictable, some challenges are faced when integrating high shares of renewable sources in power systems. In order to mitigate this problem, this paper presents a decision-making methodology regarding renewable investments. The model computes the optimal renewable generation mix from different available technologies (hydro, wind and photovoltaic) that integrates a given share of renewable sources, minimizing residual demand variability, therefore stabilizing the thermal power generation. The model also includes a spatial optimization of wind farms in order to identify the best distribution of wind capacity. This methodology is applied to the Portuguese power system.
Resumo:
A stochastic programming approach is proposed in this paper for the development of offering strategies for a wind power producer. The optimization model is characterized by making the analysis of several scenarios and treating simultaneously two kinds of uncertainty: wind power and electricity market prices. The approach developed allows evaluating alternative production and offers strategies to submit to the electricity market with the ultimate goal of maximizing profits. An innovative comparative study is provided, where the imbalances are treated differently. Also, an application to two new realistic case studies is presented. Finally, conclusions are duly drawn.
Resumo:
The integration of large amounts of wind energy in power systems raises important operation issues such as the balance between power demand and generation. The pumped storage hydro (PSH) units are seen as one solution for this issue, avoiding the need for wind power curtailments. However, the behavior of a PSH unit might differ considerably when it operates in a liberalized market with some degree of market power. In this regard, a new approach for the optimal daily scheduling of a PSH unit in the day-ahead electricity market was developed and presented in this paper, in which the market power is modeled by a residual inverse demand function with a variable elasticity. The results obtained show that increasing degrees of market power of the PSH unit correspond to decreasing levels of storage and, therefore, the capacity to integrate wind power is considerably reduced under these circumstances.
Resumo:
A área da simulação computacional teve um rápido crescimento desde o seu apareciment, sendo actualmente uma das ciências de gestão e de investigação operacional mais utilizadas. O seu princípio baseia-se na replicação da operação de processos ou sistemas ao longo de períodos de tempo, tornando-se assim uma metodologia indispensável para a resolução de variados problemas do mundo real, independentemente da sua complexidade. Das inúmeras áreas de aplicação, nos mais diversos campos, a que mais se destaca é a utilização em sistemas de produção, onde o leque de aplicações disponível é muito vasto. A sua aplicação tem vindo a ser utilizada para solucionar problemas em sistemas de produção, uma vez que permite às empresas ajustar e planear de uma maneira rápida, eficaz e ponderada as suas operações e os seus sistemas, permitindo assim uma rápida adaptação das mesmas às constantes mudanças das necessidades da economia global. As aplicações e packages de simulação têm seguindo as tendências tecnológicas pelo que é notório o recurso a tecnologias orientadas a objectos para o desenvolvimento das mesmas. Este estudo baseou-se, numa primeira fase, na recolha de informação de suporte aos conceitos de modelação e simulação, bem como a respectiva aplicação a sistemas de produção em tempo real. Posteriormente centralizou-se no desenvolvimento de um protótipo de uma aplicação de simulação de ambientes de fabrico em tempo real. O desenvolvimento desta ferramenta teve em vista eventuais fins pedagógicos e uma utilização a nível académico, sendo esta capaz de simular um modelo de um sistema de produção, estando também dotada de animação. Sem deixar de parte a possibilidade de integração de outros módulos ou, até mesmo, em outras plataformas, houve ainda a preocupação acrescida de que a sua implementação recorresse a metodologias de desenvolvimento orientadas a objectos.
Resumo:
This paper presents the new package entitled Simulator of Intelligent Transportation Systems (SITS) and a computational oriented analysis of traffic dynamics. The SITS adopts a microscopic simulation approach to reproduce real traffic conditions considering different types of vehicles, drivers and roads. A set of experiments with the SITS reveal the dynamic phenomena exhibited by this kind of system. For this purpose a modelling formalism is developed that embeds the statistics and the Laplace transform. The results make possible the adoption of classical system theory tools and point out that it is possible to study traffic systems taking advantage of the knowledge gathered with automatic control algorithms. A complementary perspective for the analysis of the traffic flow is also quantified through the entropy measure.
Resumo:
In this study the inhalation doses and respective risk are calculated for the population living within a 20 km radius of a coal-fired power plant. The dispersion and deposition of natural radionuclides were simulated by a Gaussian dispersion model estimating the ground level activity concentration. The annual effective dose and total risk were 0.03205 mSv/y and 1.25 x 10-8, respectively. The effective dose is lower than the limit established by the ICRP and the risk is lower than the limit proposed by the U.S. EPA, which means that the considered exposure does not pose any risk for the public health.