992 resultados para Power conservation


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives To evaluate the presence of false flow three-dimensional (3D) power Doppler signals in `flow-free` models. Methods 3D power Doppler datasets were acquired from three different flow-free phantoms (muscle, air and water) with two different transducers and Virtual Organ Computer-aided AnaLysis was used to generate a sphere that was serially applied through the 3D dataset. The vascularization flow index was used to compare artifactual signals at different depths (from 0 to 6 cm) within the different phantoms and at different gain and pulse repetition frequency (PR F) settings. Results Artifactual Doppler signals were seen in all phantoms despite these being flow-free. The pattern was very similar and the degree of artifact appeared to be dependent on the gain and distance from the transducer. False signals were more evident in the far field and increased as the gain was increased, with false signals first appearing with a gain of 1 dB in the air and muscle phantoms. False signals were seen at a lower gain with the water phantom (-15 dB) and these were associated with vertical lines of Doppler artifact that were related to PRF, and disappeared when reflections were attenuated. Conclusions Artifactual Doppler signals are seen in flow-free phantoms and are related to the gain settings and the distance from the transducer. In the in-vivo situation, the lowest gain settings that allow the detection of blood flow and adequate definition of vessel architecture should be used, which invariably means using a setting near or below the middle of the range available. Additionally, observers should be aware of vertical lines when evaluating cystic or liquid-containing structures. Copyright (C) 2010 ISUOC. Published by John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deforestation in southeast Brazil has led to the extinction of Hymenaea courbaril var. stilbocarpa and ex situ conservation has been established. In this study, the levels of genetic diversity and the effective population size of H. courbaril in a germplasm bank were investigated using six nuclear microsatellite loci. A total of 79 and 91 alleles were found in 65 seed-trees and their 176 offspring, respectively. Offspring have a higher average number of alleles per locus (A = 15.2) than seed-trees (A = 13.2), but lower observed heterozygosity (offspring: H (o) = 0.566; seed-trees: H (o) = 0.607). The estimate of outcrossing rate shows that the study population is perfectly outcrossed (t (m) = 0.978, P > 0.05). Significant deviations from random mating were detected through mating among relatives and correlated matings. The average variance in effective population size for each family was 2.63, with a total effective population size retained in the bank of 170.1. These results confirm that the preserved population of H. courbaril retains substantial genetic variability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sciarid DNA puff C4 BhC4-1 gene is amplified and transcribed in salivary glands at the end of the larval stage. In transgenic Drosophila, the BhC4-1 promoter drives transcription in prepupal salivary glands and in the ring gland of late embryos. A bioinformatics analysis has identified 162 sequences similar to distinct regions of the BhC4-1 proximal promoter, which are predominantly located either in 5` or 3` regions or introns in the Drosophila melanogaster genome. A significant number of the identified sequences are found in the regulatory regions of Drosophila genes that are expressed in the salivary gland. Functional assays in Drosophila reveal that the BhC4-1 proximal promoter contains both a 129 bp (-186/-58) salivary gland enhancer and a 67 bp (-253/-187) ring gland enhancer that drive tissue specific patterns of developmentally regulated gene expression, irrespective of their orientation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coastal wetlands are dynamic and include the freshwater-intertidal interface. In many parts of the world such wetlands are under pressure from increasing human populations and from predicted sea-level rise. Their complexity and the limited knowledge of processes operating in these systems combine to make them a management challenge.Adaptive management is advocated for complex ecosystem management (Hackney 2000; Meretsky et al. 2000; Thom 2000;National Research Council 2003).Adaptive management identifies management aims,makes an inventory/environmental assessment,plans management actions, implements these, assesses outcomes, and provides feedback to iterate the process (Holling 1978;Walters and Holling 1990). This allows for a dynamic management system that is responsive to change. In the area of wetland management recent adaptive approaches are exemplified by Natuhara et al. (2004) for wild bird management, Bunch and Dudycha (2004) for a river system, Thom (2000) for restoration, and Quinn and Hanna (2003) for seasonal wetlands in California. There are many wetland habitats for which we currently have only rudimentary knowledge (Hackney 2000), emphasizing the need for good information as a prerequisite for effective management. The management framework must also provide a way to incorporate the best available science into management decisions and to use management outcomes as opportunities to improve scientific understanding and provide feedback to the decision system. Figure 9.1 shows a model developed by Anorov (2004) based on the process-response model of Maltby et al. (1994) that forms a framework for the science that underlies an adaptive management system in the wetland context.