920 resultados para Powder mixtures


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the controlled variation of luminescence of ZnO nanostructures from intense ultraviolet to bright visible light. Deliberate addition of surfactants in the reaction medium not only leads to growth anisotropy of ZnO, but also alters the luminescence property. ZnO nanoclusters comprising of very fine particles with crystallite sizes approximate to 15-22nm were prepared in a non-aqueous medium, either from a single alcohol or from their mixtures. Introduction of the aqueous solution of the surfactant helps in altering the microstructure of ZnO nanostructure to nanorods, nanodumb-bells as well as the luminescence property. The as-prepared powder material is found to be well crystallized. Defects introduced by the surfactant in aqueous medium play an important role in substantial transition in the optical luminescence. Chromaticity coordinates were found to lie in the yellow region of color space. This gives an impression of white light emission from ZnO nanocrystals, when excited by a blue laser. Oxygen vacancy is described as the major defect responsible for visible light emission as quantified by X-ray photoelectron spectroscopy and Raman analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have shown earlier [1] that these PGNPs resemble star polymers or spherical brushes in terms of their morphology in the melt. However, these particles show dynamics in melt which is quite different from other soft colloidal particles. Since most of the work on soft colloidal particles have been performed in solutions we have now explored the phase behavior of the PGNPs in good solvent using microscopic structural and dynamical measurements on binary mixtures of homopolymers and soft colloids consisting of polymer grafted nanoparticles. We observe anomalous structural and dynamical phase transitions of these binary mixtures, including appearance of spontaneous orientational alignment and logarithmic structural relaxations, as a function of added homopolymers of different molecular weights. Our experiments points to the possibility of exploiting the phase space in density and homopolymer size, of such hybrid systems, to create new materials with unique properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural, magnetic and dielectric properties of nano zinc ferrite prepared by the propellant chemistry technique are studied. The PXRD measurement at room temperature reveal that the compound is in cubic spinel phase, belong to the space group Fd (3) over barm. The unit cell parameters have been estimated from Rietveld refinement. The calculated force constants from FTIR spectrum corresponding to octahedral and tetrahedral sites at 375 and 542 cm(-1) are 6.61 x 10(2) and 3.77 x 10(2) N m(-1) respectively; these values are slightly higher compared to the other ferrite systems. Magnetic hysteresis and EPR spectra show superparamagnetic property nearly to room temperature due to comparison values between magnetic anisotropy energy and the thermal energy. The calculated values of saturation magnetization, remenant magnetization, coercive field and magnetic moment supports for the existence of multi domain particles in the sample. The temperature dependent magnetic field shows the spin freezing state at 30 K and the blocking temperature at above room temperature. The frequency dependent dielectric interactions show the variation of dielectric constant, dielectric loss and impedance as similar to other ferrite systems. The AC conductivity in the prepared sample is due to the presence of electrons, holes and polarons. The synthesized material is suitable for nano-electronics and biomedical applications. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water-tert-butyl alcohol (TBA) binary mixture exhibits a large number of thermodynamic and dynamic anomalies. These anomalies are observed at surprisingly low TBA mole fraction, with x(TBA) approximate to 0.03-0.07. We demonstrate here that the origin of the anomalies lies in the local structural changes that occur due to self-aggregation of TBA molecules. We observe a percolation transition of the TBA molecules at x(TBA) approximate to 0.05. We note that ``islands'' of TBA clusters form even below this mole fraction, while a large spanning cluster emerges above that mole fraction. At this percolation threshold, we observe a lambda-type divergence in the fluctuation of the size of the largest TBA cluster, reminiscent of a critical point. Alongside, the structure of water is also perturbed, albeit weakly, by the aggregation of TBA molecules. There is a monotonic decrease in the tetrahedral order parameter of water, while the dipole moment correlation shows a weak nonlinearity. Interestingly, water molecules themselves exhibit a reverse percolation transition at higher TBA concentration, x(TBA) approximate to 0.45, where large spanning water clusters now break-up into small clusters. This is accompanied by significant divergence of the fluctuations in the size of largest water cluster. This second transition gives rise to another set of anomalies around. Both the percolation transitions can be regarded as manifestations of Janus effect at small molecular level. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adsorption experiments of mixtures of long chain alkanes into silicalite under liquid phase conditions show selectivity inversion and azeotrope formation. These effects are due to the subtle interplay between the size of the adsorbed molecules and pore topology of the adsorbent. In this study, the selective uptake of lighter component during liquid phase adsorption of C/C and C/C n-alkane binary mixtures in the zeolite silicalite is understood through configurational bias grand-canonical Monte Carlo molecular simulation technique and a coarse-grained siting analysis. The simulations are conducted under conditions of low and intermediate levels of loading. The siting pattern of the adsorbates inside the zeolite pores explain the selectivity as seen in experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of a viable adsorbed natural gas onboard fuel system involves synthesizing materials that meet specific storage target requirements. We assess the impact on natural gas storage due to intermediate processes involved in taking a laboratory powder sample to an onboard packed or adsorbent bed module. We illustrate that reporting the V/V (volume of gas/volume of container) capacities based on powder adsorption data without accounting for losses due to pelletization and bed porosity, grossly overestimates the working storage capacity for a given material. Using data typically found for adsorbent materials that are carbon and MOF based materials, we show that in order to meet the Department of Energy targets of 180 V/V (equivalent STP) loading at 3.5 MPa and 298 K at the onboard packed bed level, the volumetric capacity of the pelletized sample should be at least 245 V/V and the corresponding gravimetric loading varies from 0.175 to 0.38 kg/kg for pellet densities ranging from 461.5 to 1,000 . With recent revision of the DOE target to 263 V/V at the onboard packed bed level, the volumetric loadings for the pelletized sample should be about 373 V/V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present detailed results from a molecular dynamics (MD) simulation of phase-separation kinetics in polymer mixtures. Our MD simulations naturally incorporate hydrodynamic effects. We find that polymeric phase separation (with dynamically symmetric components) is in the same universality class as segregation of simple fluids: the degree of polymerization only slows down the segregation kinetics. For d = 2 polymeric fluids, the domain growth law is L(t) similar to t(phi) with phi showing a crossover from 1/3 -> 1/2 -> 2/3. For d = 3 polymeric fluids, we see the crossover phi = 1/3 -> 1. Our MD simulations do not yet access the inertial hydrodynamic regime (with L similar to t(2/3)) of phase separation in 3-d fluids. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of microporous adsorbents for separation and sequestration of carbon dioxide from flue gas streams is an area of active research. In this study, we assess the influence of specific functional groups on the adsorption selectivity of CO2/N-2 mixtures through Grand Canonical Monte Carlo (GCMC) simulations. Our model system consists of a bilayer graphene nanoribbon that has been edge functionalized with OH, NH2, NO2, CH3 and COOH. Ab initio Moller-Plesset (MP2) calculations with functionalized benzenes are used to obtain binding energies and optimized geometries for CO2 and N-2. This information is used to validate the choice classical forcefields in GCMC simulations. In addition to simulations of adsorption from binary mixtures of CO2 and N-2, the ideal adsorbed solution theory (IAST) is used to predict mixture isotherms. Our study reveals that functionalization always leads to an increase in the adsorption of both CO2 and N-2 with the highest for COOH. However, significant enhancement in the selectivity for CO2 is only seen with COOH functionalized nanoribbons. The COOH functionalization gives a 28% increase in selectivity compared to H terminated nanoribbons, whereas the improvement in the selectivity for other functional groups are much Enure modest. Our study suggests that specific functionalization with COOH groups can provide a material's design strategy to improve CO2 selectivity in microporous adsorbents. Synthesis of graphene nanoplatelets with edge functionalized COOH, which has the potential for large scale production, has recently been reported (Jeon el, al., 2012). (C) 2014 Elsevier Ltd. All rights reserved,

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A `powder-poling' technique was developed to study electric field induced structural transformations in ferroelectrics exhibiting a morphotropic phase boundary (MPB). The technique was employed on soft PZT exhibiting a large longitudinal piezoelectric response (d(33) similar to 650 pCN(-1)). It was found that electric poling brings about a considerable degree of irreversible tetragonal to monoclinic transformation. The same transformation was achieved after subjecting the specimen to mechanical stress, which suggests an equivalence of stress and electric field with regard to the structural mechanism in MPB compositions. The electric field induced structural transformation was also found to be accompanied by a decrease in the spatial coherence of polarization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We explore the potential energy landscape of structure breaking binary mixtures (SBBM) where two constituents dislike each other, yet remain macroscopically homogeneous at intermediate to high temperatures. Interestingly, we find that the origin of strong composition dependent non-ideal behaviour lies in its phase separated inherent structure. The inherent structure (IS) of SBBM exhibits bi-continuous phase as is usually formed during spinodal decomposition. We draw analogy of this correlation between non-ideality and phase separation in IS to explain observation of non-ideality in real aqueous mixtures of small amphiphilic solutes, containing both hydrophilic and hydrophobic groups. Although we have not been able to obtain IS of these liquids, we find that even at room temperature these liquids sustain formation of fluctuating, transient bi-continuous phase, with limited lifetime (tau less than or similar to 20 ps). While in the model (A, B) binary mixture, the non-ideal composition dependence can be considered as a fluctuation from a phase separated state, a similar scenario is expected to be responsible for the unusually strong non-ideality in these aqueous binary mixtures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The blocked diisocyanate crosslinked chitosan membrane was modified by incorporating different mass% of NaY zeolite. The physico-chemical properties of resulting composite membranes were studied using Fourier transform infrared spectroscopy (FTIR), wide-angle X-ray diffraction (WAXD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The mechanical properties of the membranes were studied using universal testing machine (UTM). After measuring the equilibrium swelling, membranes were subjected to pervaporation for separation of water-isopropanol mixtures. Both flux and selectivity were increased with increasing NaY zeolite content in the membranes. The membrane containing 40 mass% of NaY zeolite exhibited the highest separation selectivity of 11,241 with a flux of 11.37 x 10(-2) kg/m(2) h for 10 mass% of water in the feed. The total flux and flux of water are almost overlapping each other, suggesting that these membranes could be effectively used to break the azeotropic point of water-isopropanol mixture. From the temperature dependent diffusion and permeation values, the Arrhenius activation parameters were estimated. All the composite membranes exhibited lower activation energy compared to crosslinked membrane, indicating that the permeants require less energy during the process because of molecular sieving action attributed to the presence of sodalite and super cages in the framework of Nay zeolite. The Henry's mode of sorption dominates the process, giving an endothermic contribution. (C) 2014 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a detailed thermodynamic performance analysis of a transcritical condensing (TC) cycle is performed with pure CO2 and a blend of 48.5 % propane with 51.5 % CO2 as working fluids. A realistic thermodynamic model is used incorporating irreversibilities in turbo-machineries and heat exchangers. The Key finding is that the addition of propane elevates the heat rejection temperature, but does not impair any of the performance indicators. Such a fluid may be useful for power generation in concentrated solar power applications by using which a hike of up to 2 % can be realized in the thermal efficiency of a power plant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The triple perovskites Ba3ZnRu2-xIrxO9 with x = 0, 1, and 2 are insulating compounds in which Ru(Ir) cations form a dimer state. Polycrystalline samples of these materials were studied using neutron powder diffraction (NPD) at 10 and 295 K. No structural transition nor evidence of long range magnetic order was observed within the investigated temperature range. The results from structural refinements of the NPD data and its polyhedral analysis are presented, and discussed as a function of Ru/Ir content. (C) 2015 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose - The purpose of this paper is to investigate the possibility to construct tissue-engineered bone repair scaffolds with pore size distributions using rapid prototyping techniques. Design/methodology/approach - The fabrication of porous scaffolds with complex porous architectures represents a major challenge in tissue engineering and the design aspects to mimic complex pore shape as well as spatial distribution of pore sizes of natural hard tissue remain unexplored. In this context, this work aims to evaluate the three-dimensional printing process to study its potential for scaffold fabrication as well as some innovative design of homogeneously porous or gradient porous scaffolds is described and such design has wider implication in the field of bone tissue engineering. Findings - The present work discusses biomedically relevant various design strategies with spatial/radial gradient in pore sizes as well as with different pore sizes and with different pore geometries. Originality/value - One of the important implications of the proposed novel design scheme would be the development of porous bioactive/biodegradable composites with gradient pore size, porosity, composition and with spatially distributed biochemical stimuli so that stem cells loaded into scaffolds would develop into complex tissues such as those at the bone-cartilage interface.