934 resultados para Pore-size Distributions
Resumo:
Two years of harmonized aerosol number size distribution data from 24 European field monitoring sites have been analysed. The results give a comprehensive overview of the European near surface aerosol particle number concentrations and number size distributions between 30 and 500 nm of dry particle diameter. Spatial and temporal distribution of aerosols in the particle sizes most important for climate applications are presented. We also analyse the annual, weekly and diurnal cycles of the aerosol number concentrations, provide log-normal fitting parameters for median number size distributions, and give guidance notes for data users. Emphasis is placed on the usability of results within the aerosol modelling community. We also show that the aerosol number concentrations of Aitken and accumulation mode particles (with 100 nm dry diameter as a cut-off between modes) are related, although there is significant variation in the ratios of the modal number concentrations. Different aerosol and station types are distinguished from this data and this methodology has potential for further categorization of stations aerosol number size distribution types. The European submicron aerosol was divided into characteristic types: Central European aerosol, characterized by single mode median size distributions, unimodal number concentration histograms and low variability in CCN-sized aerosol number concentrations; Nordic aerosol with low number concentrations, although showing pronounced seasonal variation of especially Aitken mode particles; Mountain sites (altitude over 1000 m a.s.l.) with a strong seasonal cycle in aerosol number concentrations, high variability, and very low median number concentrations. Southern and Western European regions had fewer stations, which decreases the regional coverage of these results. Aerosol number concentrations over the Britain and Ireland had very high variance and there are indications of mixed air masses from several source regions; the Mediterranean aerosol exhibit high seasonality, and a strong accumulation mode in the summer. The greatest concentrations were observed at the Ispra station in Northern Italy with high accumulation mode number concentrations in the winter. The aerosol number concentrations at the Arctic station Zeppelin in Ny-Ålesund in Svalbard have also a strong seasonal cycle, with greater concentrations of accumulation mode particles in winter, and dominating summer Aitken mode indicating more recently formed particles. Observed particles did not show any statistically significant regional work-week or weekday related variation in number concentrations studied. Analysis products are made for open-access to the research community, available in a freely accessible internet site. The results give to the modelling community a reliable, easy-to-use and freely available comparison dataset of aerosol size distributions.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Deep bed filtration occurs in several industrial and environmental processes like water filtration and soil contamination. In petroleum industry, deep bed filtration occurs near to injection wells during water injection, causing injectivity reduction. It also takes place during well drilling, sand production control, produced water disposal in aquifers, etc. The particle capture in porous media can be caused by different physical mechanisms (size exclusion, electrical forces, bridging, gravity, etc). A statistical model for filtration in porous media is proposed and analytical solutions for suspended and retained particles are derived. The model, which incorporates particle retention probability, is compared with the classical deep bed filtration model allowing a physical interpretation of the filtration coefficients. Comparison of the obtained analytical solutions for the proposed model with the classical model solutions allows concluding that the larger the particle capture probability, the larger the discrepancy between the proposed and the classical models
Resumo:
The species and size selectivity of long-lines using small hooks were studied off the south coast of Portugal using ''Mustad'' brand round bent, flatted sea hooks (Quality 2316 DT) numbers 15, 13, and 11 baited with razor shell clam (Ei-isis siliqua). Hook numbers 13 and 11 are 49 and 109% larger respectively than number 15 hooks in terms of overall size (maximum width x maximum length). A total of 39 900 hooks were fished in 45 sets and 35 species of fish and cephalopods were caught. As a group, 13 species of sea breams (Sparidae) dominated the catch by numbers (58%) and weight (73%). Six species of sea breams, along with the greater weever fish (Trachinus draco) accounted for 81% of the total catch by weight, with the common or white sea bream (Diplodus sargus) bring the most important (29%). Catch size distributions by hook size were, in general, highly overlapped for all species and hook size had little apparent effect on minimum size at capture. All hooks caught a wide range of sizes per species, but the catch rate (number of fish per 100 hooks) was significantly lower for the largest hook. Except for the black sea bream (Spondyliosoma cantharus), capture of illegally sized or immature fish was minimal. Small increases in average size with hook size were evident for four species: Diplodus sargus, D. vulgaris, Lithognathus mormyrus and Serranus cabrilla. No differences in size selectivity were detected for Boops boops, D. annularis, Spondyliosoma cantharus and Trachinus draco. A skew-normal model adequately described differences in size selectivity in five of six species. (C) 1996 International Council for the Exploration of the Sea
Resumo:
A longline 'metier' using small hooks for 'red' sea breams (Pagellus acarne and Pagellus erythrinus) in the Algarve (south of Portugal) was studied. Experimental longlining was carried out with three sizes of "Mustad" round bend, flatted, spade end Quality 2316 DT hooks (numbers 11, 13 and 15) and two types of bait: razor shell (Ensis siliqua) and mud shrimp (Upogebia pusilla). A total of 3 328 fish and at least 36 species were caught with 33 600 hooks fished in 28 longline sets. Five species of sea breams (Sparidae) accounted for 79% of the catch: Pagellus acarne, Pagellus erythrinus, Diplodus vulgaris, Spondyliosoma cantharus, and Boops boops. High catch rates of 20-30 fish per 100 hooks were made in a number of 1 200 hook longline sets, with total catch weights of 40 to more than 60 kg per set. In general, the smallest hook (number 15) had the highest catch rate. Bait type did not significantly affect the catch size distributions. Although more fish were caught with the razor shell bait, higher catch rates of 'red' sea breams were obtained with mud shrimp. Catch rates were also affected by the location of the fishing grounds and the time of the set, with the highest catch rates obtained when the longline was set within two hours before sunrise. A wide size range was caught for each species, with highly overlapped catch size frequency distributions for the three hook sizes used. Except for Spondyliosoma cantharus, few illegal-sized fish were caught, even with the smallest hook. The logistic model fitted by maximum likelihood was used to describe hook selectivity for Diplodus vulgaris, Pagellus acarne, Pagellus erythrinus, and Spondyliosoma cantharus. (C) Ifremer-Elsevier, Paris.
Resumo:
Three long-line methods have been studied in the Algarve: 1) small-hook long-line for inshore (less than 30 m) ‘white’ sea breams (Sparidae); 2) small-hook long-line for deeper water (40-60 m) ‘red’ sea breams; and 3) deep water (500-700 m) semi-pelagic long-line for hake Merluccius merluccius (Linnaeus, 1758). Selectivity studies were carried out with three hook sizes in the first two cases: Mustad round-bent Quality 2369 hooks, numbers 15, 13, and 11, baited with a standardsized razor-shell Ensis siliqua (Linnaeus, 1758). Four hook sizes (numbers 10, 9, 7, and 5) of Stell round-bent, eyed hooks were used in the semi-pelagic long-line selectivity study, baited with a half of a standard-sized sardine. Some factors affecting catch composition and catch rates of the small hook long-lines were also evaluated: bait, gangion length, setting time, fishing ground, and depth. Species diversity was relatively high, with 40, 36 and 27 species, respectively, in the three studies. However, the catches were dominated by a limited number of species. Catch rates (number of fish per 100 hooks) were variable (< 5 %; > 20 %), with a general decrease in catch rate with increasing hook size in all the studies. In general, the catch size distributions for the different hook sizes for each species were highly overlapping, with little or no evidence of differences in size selectivity. Hooks caught a wide size-range for each species, with few or no illegal-sized fish, in most cases. Some implications of these results for the management of multi-species, multi-gear fisheries are discussed.
Resumo:
The mesoporous SBA-15 silica with uniform hexagonal pore, narrow pore size distribution and tuneable pore diameter was organofunctionalized with glutaraldehyde-bridged silylating agent. The precursor and its derivative silicas were ibuprofen-loaded for controlled delivery in simulated biological fluids. The synthesized silicas were characterized by elemental analysis, infrared spectroscopy, (13)C and (29)Si solid state NMR spectroscopy, nitrogen adsorption, X-ray diffractometry, thermogravimetry and scanning electron microscopy. Surface functionalization with amine containing bridged hydrophobic structure resulted in significantly decreased surface area from 802.4 to 63.0 m(2) g(-1) and pore diameter 8.0-6.0 nm, which ultimately increased the drug-loading capacity from 18.0% up to 28.3% and a very slow release rate of ibuprofen over the period of 72.5h. The in vitro drug release demonstrated that SBA-15 presented the fastest release from 25% to 27% and SBA-15GA gave near 10% of drug release in all fluids during 72.5 h. The Korsmeyer-Peppas model better fits the release data with the Fickian diffusion mechanism and zero order kinetics for synthesized mesoporous silicas. Both pore sizes and hydrophobicity influenced the rate of the release process, indicating that the chemically modified silica can be suggested to design formulation of slow and constant release over a defined period, to avoid repeated administration.
Resumo:
The segment of the world population showing permanent or temporary lactose intolerance is quite significant. Because milk is a widely consumed food with an high nutritional value, technological alternatives have been sought to overcome this dilemma. Microfiltration combined with pasteurization can not only extend the shelf life of milk but can also maintain the sensory, functional, and nutritional properties of the product. This studied developed a pasteurized, microfiltered, lactose hydrolyzed (delactosed) skim milk (PMLHSM). Hydrolysis was performed using β-galactosidase at a concentration of 0.4mL/L and incubation for approximately 21h at 10±1°C. During these procedures, the degree of hydrolysis obtained (>90%) was accompanied by evaluation of freezing point depression, and the remaining quantity of lactose was confirmed by HPLC. Milk was processed using a microfiltration pilot unit equipped with uniform transmembrane pressure (UTP) ceramic membranes with a mean pore size of 1.4 μm and UTP of 60 kPa. The product was submitted to physicochemical, microbiological, and sensory evaluations, and its shelf life was estimated. Microfiltration reduced the aerobic mesophilic count by more than 4 log cycles. We were able to produce high-quality PMLHSM with a shelf life of 21 to 27d when stored at 5±1°C in terms of sensory analysis and proteolysis index and a shelf life of 50d in regard to total aerobic mesophile count and titratable acidity.
Resumo:
The pollutant transference among reservoirs atmosphere-hydrosphere, relevant to the atmospheric chemistry, depends upon scavenging coefficient (Λ) calculus, which depends on the raindrop size distribution as well as on the rainfall systems, both different to each locality. In this work, the Λ calculus will be evaluated to gas SO2 and particulate matter fine and coarse among five sites in Germany and two in Brazil. The results show three possible classifications in function of Λ, comparable to literature, however with a greater range due to the differences of rainfall system sites. This preliminary study supports future researches
Resumo:
In this work, we propose natural rubber latex (NRL) membranes as a protein delivery system. For this purpose Bovine Serum Albumin (BSA) was incorporated into the latex solution for in vitro protein delivery experiments. Different polymerization temperatures were used, from -10 to 27 °C, in order to control the membrane morphology. These membranes were characterized by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), as well as the Lowry Method to measure the BSA release. SEM and AFM microscopy analysis showed that the number, size and distribution of pores in NRL membranes can be varied, as well as its overall morphology. We have found that the morphology of the membrane is the predominant factor for higher protein release, compared with pore size and number of pores. Results demonstrated that the best drug-delivery system was the membrane polymerized at RT (27 °C), which does release 66% of its BSA content for up to 18 days. Our results indicate that NRLb could be used in the future as an active membrane that could accelerate bone healing in GBR.
Resumo:
The quantification of sources of carbonaceous aerosol is important to understand their atmospheric concentrations and regulating processes and to study possible effects on climate and air quality, in addition to develop mitigation strategies. In the framework of the European Integrated Project on Aerosol Cloud Climate Interactions (EUCAARI) fine (D(p) < 2.5 mu m) and coarse (2.5 mu m < Dp < 10 mu m) aerosol particles were sampled from February to June (wet season) and from August to September (dry season) 2008 in the central Amazon basin. The mass of fine particles averaged 2.4 mu g m(-3) during the wet season and 4.2 mu g m(-3) during the dry season. The average coarse aerosol mass concentration during wet and dry periods was 7.9 and 7.6 mu g m(-3), respectively. The overall chemical composition of fine and coarse mass did not show any seasonality with the largest fraction of fine and coarse aerosol mass explained by organic carbon (OC); the average OC to mass ratio was 0.4 and 0.6 in fine and coarse aerosol modes, respectively. The mass absorbing cross section of soot was determined by comparison of elemental carbon and light absorption coefficient measurements and it was equal to 4.7 m(2) g(-1) at 637 nm. Carbon aerosol sources were identified by Positive Matrix Factorization (PMF) analysis of thermograms: 44% of fine total carbon mass was assigned to biomass burning, 43% to secondary organic aerosol (SOA), and 13% to volatile species that are difficult to apportion. In the coarse mode, primary biogenic aerosol particles (PBAP) dominated the carbonaceous aerosol mass. The results confirmed the importance of PBAP in forested areas. The source apportionment results were employed to evaluate the ability of global chemistry transport models to simulate carbonaceous aerosol sources in a regional tropical background site. The comparison showed an overestimation of elemental carbon (EC) by the TM5 model during the dry season and OC both during the dry and wet periods. The overestimation was likely due to the overestimation of biomass burning emission inventories and SOA production over tropical areas.
Resumo:
We have systematically studied the magnetic properties of ferrite nanoparticles with 3, 7, and 11 nm of diameter with very narrow grain size distributions. Samples were prepared by the thermal decomposition of Fe (acac)(3) in the presence of surfactants giving nanoparticles covered by oleic acid. High resolution transmission electron microscopy (HRTEM) images and XRD diffraction patterns confirms that all samples are composed by crystalline nanoparticles with the spinel structure expected for the iron ferrite. ac and dc magnetization measurements, as well in-field Mossbauer spectroscopy, indicate that the magnetic properties of nanoparticles with 11 and 7 nm are close to those expected for a monodomain, presenting large M(S) (close to the magnetite bulk). Despite the crystalline structure observed in HRTEM images, the nanoparticles with 3 nm are composed by a magnetically ordered region (core) and a surface region that presents a different magnetic order and it contains about 66% of Fe atoms. The high saturation and irreversibility fields in the M(H) loops of the particles with 3 nm together with the misalignment at 120 kOe in the in-field Mossbauer spectrum of surface component indicate a high surface anisotropy for the surface atoms, which is not observed for the core. For T < 10 K, we observe an increase in the susceptibility and of the magnetization for former sample, indicating that surface moments tend to align with applied field increasing the magnetic core size. (C) 2010 American Institute of Physics. [doi:10.1063/1.3514585]
Resumo:
It has been demonstrated that laser induced breakdown spectrometry (LIBS) can be used as an alternative method for the determination of macro (P, K. Ca, Mg) and micronutrients (B, Fe, Cu, Mn, Zn) in pellets of plant materials. However, information is required regarding the sample preparation for plant analysis by LIBS. In this work, methods involving cryogenic grinding and planetary ball milling were evaluated for leaves comminution before pellets preparation. The particle sizes were associated to chemical sample properties such as fiber and cellulose contents, as well as to pellets porosity and density. The pellets were ablated at 30 different sites by applying 25 laser pulses per site (Nd:YAG@1064 nm, 5 ns, 10 Hz, 25J cm(-2)). The plasma emission collected by lenses was directed through an optical fiber towards a high resolution echelle spectrometer equipped with an ICCD. Delay time and integration time gate were fixed at 2.0 and 4.5 mu s, respectively. Experiments carried out with pellets of sugarcane, orange tree and soy leaves showed a significant effect of the plant species for choosing the most appropriate grinding conditions. By using ball milling with agate materials, 20 min grinding for orange tree and soy, and 60 min for sugarcane leaves led to particle size distributions generally lower than 75 mu m. Cryogenic grinding yielded similar particle size distributions after 10 min for orange tree, 20 min for soy and 30 min for sugarcane leaves. There was up to 50% emission signal enhancement on LIBS measurements for most elements by improving particle size distribution and consequently the pellet porosity. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Hybrid matrices of polysiloxane-polyvinyl alcohol (POS-PVA) were prepared by sol-gel technique using different concentrations of the organic component (polyvinyl alcohol, PVA) in the synthesis medium. The goal was to prepare carriers for immobilizing enzyme by taking into consideration properties as hardness, mean pore diameter, specific surface area and pore size distribution. The matrices were activated with sodium metaperiodate to render functional groups for binding the lipase from Candida rugosa, used here as a study model. Results showed that low proportion of PVA gave POS-PVA with low surface area and pore volume, although with higher hardness. The chemical activation decreased the pore volume and increased the pore size with a decrease on the surface area of about 60-75%. The matrices for enzyme immobilization were chosen considering the best combination of high surface area and hardness. Thus, the POS-PVA prepared with 5.56 x 10(-5) M of PVA with a surface area of 123 m(2)/g and hardness of 71 HV (50 gf 30 s) was shown to be suitable to immobilize the lipase, with an immobilization yield of about 40%. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Different types of activated carbon were prepared by chemical activation of brewer`s spent grain (BSG) lignin using H(3)PO(4) at various acid/lignin ratios (1, 2, or 3 g/g) and carbonization temperatures (300, 450, or 600 degrees C), according to a 2(2) full-factorial design. The resulting materials were characterized with regard to their surface area, pore volume, and pore size distribution, and used for detoxification of BSG hemicellulosic hydrolysate (a mixture of sugars, phenolic compounds, metallic ions, among other compounds). BSG carbons presented BET surface areas between 33 and 692 m(2)/g, and micro- and mesopores with volumes between 0.058 and 0.453 cm(3)/g. The carbons showed high capacity for adsorption of metallic ions, mainly nickel, iron, chromium, and silicon. The concentration of phenolic compounds and color were also reduced by these sorbents. These results suggest that activated carbons with characteristics similar to those commercially found and high adsorption capacity can be produced from BSG lignin. (C) 2009 Elsevier Ltd. All rights reserved.