982 resultados para Polymerase Chain Reaction Detection
Resumo:
We validated the polymerase chain reaction (PCR) with a composite reference standard in 61 patients clinically suspected of having mucosal leishmaniasis, 36 of which were cases and 25 were non-cases according to this reference standard. Patient classification and test application were carried out independently by two blind observers. One pair of primers was used to amplify a fragment of 120 bp in the conserved region of kDNA and another pair was used to amplify the internal transcript spacers (ITS) rDNA. PCR showed 68.6% (95% CI 59.2-72.6) sensitivity and 92% (95% CI 78.9-97.7) specificity; positive likelihood ratio: 8.6 (95% CI 2.8-31.3) and negative likelihood ratio: 0.3 (95% CI 0.3-0.5), when kDNA molecular target was amplified. The test performed better on sensitivity using this target compared to the ITS rDNA molecular target which showed 40% (95% CI 31.5-42.3) sensitivity and 96% (95% CI 84.1-99.3) specificity; positive likelihood ratio: 10 (95% CI 2.0-58.8) and negative likelihood ratio: 0.6 (95% CI 0.6-0.8). The inter-observer agreement was excellent for both tests. Based upon results obtained and due to low performance of conventional methods for diagnosing mucosal leishmaniasis, we consider PCR with kDNA as molecular target is a useful diagnostic test and the ITS rDNA molecular target is useful when the aim is to identify species.
Resumo:
The Epstein-Barr virus (EBV) is the etiological agent of oral hairy leukoplakia (OHL), an oral lesion with important diagnostic and prognostic value in acquired immunodeficiency disease syndrome. The two EBV genotypes, EBV-1 and EBV-2, can be distinguished by divergent gene sequences encoding the EBNA-2, 3A, 3B, and 3C proteins. The purpose of this study was to identify the EBV genotype prevalent in 53 samples of scrapings from the lateral border of the tongue of HIV-1 seropositive patients, with and without OHL, and to correlate the genotypes with presence of clinical or subclinical OHL with the clinic data collected. EBV-1 and EBV-2 were identified through PCR and Nested-PCR based on sequence differences of the EBNA-2 gene. EBV-1 was identified in the 31 samples (15 without OHL, 7 with clinical OHL and 9 with subclinical OHL), EBV-2 in 12 samples (10 without OHL, 1 with clinical and 1 subclinical OHL), and a mixed infection in 10 samples (2 without OHL, 3 with clinical and 5 with subclinical OHL). The presence of EBV-1 was higher in women, but a significant statistical result relating one the EBV genotypes to the development of OHL was not found. We conclude that the oral epithelium in HIV-1 seropositive patients can be infected by EBV-1, EBV-2 or by a mixed viral population.
Resumo:
Comparison of the use of indirect immunofluorescence assay (IFA), immunochromatography assay (ICA-BD) and reverse transcription-polymerase chain reaction (RT-PCR) for detecting human respiratory syncytial virus (HRSV) in 306 nasopharyngeal aspirates samples (NPA) was performed in order to assess their analytical performance. By comparing the results obtained using ICA-BD with those using IFA, we found relative indices of 85.0% for sensitivity and 91.2% for specificity, and the positive (PPV) and negative (NPV) predictive values were 85.0% and 91.2%, respectively. The relative indices for sensitivity and specificity as well as the PPV and NPV for RT-PCR were 98.0%, 89.0%, 84.0% and 99.0%, respectively, when compared to the results of IFA. In addition, comparison of the results of ICA-BD and those of RT-PCR yielded relative indices of 79.5% for sensitivity and 95.4% for specificity, as well as PPV and NPV of 92.9% and 86.0%, respectively. Although RT-PCR has shown the best performance, the substantial agreement between the ICA-BD and IFA results suggests that ICA-BD, also in addition to being a rapid and facile assay, could be suitable as an alternative diagnostic screening for HRSV infection in children.
Resumo:
The present study investigated the diagnostic value of polymerase chain reaction (PCR) performed in parallel to conventional methods at an American tegumentary leishmaniasis (ATL) referral centre for diagnosis. Accuracy parameters for PCR were calculated using 130 patients with confirmed ATL (ATL group), 15 patients established with other diseases and 23 patients with a lesion suggestive of ATL, but without parasitological confirmation (NDEF group). PCR showed 92.3% sensitivity, 93.3% specificity, a 99.2% positive predictive value and a 13.84 positive likelihood ratio. In the NDEF group, PCR confirmed ATL in 13 of the 23 patients, seven of whom responded to leishmaniasis treatment and six who presented spontaneous healing of the lesion. PCR should be included in the routine diagnostic procedures for ATL, especially for cases found to be negative by conventional methods.
Resumo:
Leptospirosis is a zoonotic disease caused by the pathogenic Leptospira spp. The clinical presentations are diverse, ranging from undifferentiated fever to fulminant disease including meningeal forms. The neurological leptospirosis forms are usually neglected. The aim of this study was to investigate leptospirosis as the cause of aseptic meningitis using different diagnostic techniques including the polymerase chain reaction (PCR). Thirty-nine cerebrospinal fluid (CSF) samples from patients presenting with meningeal abnormalities, predominance of lymphocytes and negative results by traditional microbiological tests were processed by leptospiral culture, anti-leptospiral antibody response and PCR. Leptospira spp DNA was detected in 23 (58.97%) of the CSF samples. Anti-leptospiral antibodies were found in 13 (33.33%) CSF samples. Twelve CSF samples were positive by PCR assay and negative by microscopic agglutination test (MAT) assay. Two CSF samples were positive by MAT and negative by PCR. The positive and negative agreement between both tests was 11 and 14, respectively. CSF samples from six cases of unknown diagnosis were positive by PCR assay. Eight cases showed positive results using PCR and MAT. Leptospirosis could be detected by PCR assay from the 3rd-26th day after illness onset. The sensitivity of the PCR was assessed with confirmed cases of leptospirosis (by MAT) and found to be 89.5%. All CSFs were negative by culture. PCR was found to be a powerful tool for diagnosing meningitis cases of leptospirosis. We recommend that it may be used as a supplementary diagnostic tool, especially in the early stages of the disease, when other diagnostic techniques such as serology are not sensitive.
Resumo:
This work reports a survey of Leptospira spp in pampas deer (Ozotoceros bezoarticus) in the Pantanal wetlands of the state of Mato Grosso do Sul, Brazil by serology and polymerase chain reaction (PCR). Seventy pampas deer were captured in the dry season and surveyed using PCR, microscopic agglutination test (MAT) (n = 51) and by both techniques (n = 47). PCR detected infections in two pampas deer and MAT detected infections in three. Through sequencing and phylogenetic analyses, the PCR-amplified fragment detected in deer was identified as Leptospira interrogans. Serovars Pomona and Butembo were detected using MAT and the highest titre was 200 for serovar Pomona. Epidemiological aspects of the findings are discussed.
Resumo:
BACKGROUND: Dermatophyte identification in tinea capitis is essential for choosing the appropriate treatment and in tinea infections to identify the possible source. The failure of fungi to grow in cultures frequently occurs, especially in cases of previous antifungal therapy. OBJECTIVES: To develop a rapid polymerase chain reaction (PCR) sequencing assay for dermatophyte identification in tinea capitis and tinea corporis. MATERIAL AND METHODS: Fungal DNA was extracted from hair and skin samples that were confirmed to be positive by direct mycological examination. Dermatophytes were identified by the sequence of a 28S ribosomal DNA subunit amplicon generated by nested PCR. RESULTS: Nested PCR was found to be necessary to obtain amplicons in substantial amounts for dermatophyte identification by sequencing. The results agreed with those of classical mycological identification in 14 of 23, 6 of 10, and 20 of 23 cases of tinea capitis, tinea corporis and tinea pedis, respectively, from which a dermatophyte was obtained in culture. In seven of the 56 cases, another dermatophyte was identified, revealing previous misidentification. A dermatophyte was identified in 12 of 18, three of five, and four of nine cases of tinea capitis, tinea corporis and tinea pedis, respectively, in cases in which no dermatophyte grew in culture. CONCLUSIONS: Although the gold standard dermatophyte identification from clinical samples remains fungal cultures, the assay developed in the present study is especially suitable for tinea capitis. Improved sensitivity for the identification of dermatophyte species was obtained as it is possible to identify the dermatophyte when the fungus fails to grow in cultures.
Resumo:
This study aimed to evaluate the occurrence of schistosomiasis in areas with low endemicity using polymerase chain reaction (PCR) as a diagnostic method. We analysed faecal samples from 219 individuals residing in Piau and Coronel Pacheco, state of Minas Gerais, Brazil, using a single faecal sample from each individual and two slides of the Kato-Katz technique as a gold standard. Fifteen out of the 219 samples were positive with both methods of diagnosis. One sample was diagnosed as positive by the Kato-Katz technique only and 61 were diagnosed only by PCR. The positivity rates were 7.3% with the Kato-Katz method and 34.7% with PCR. When both techniques were assumed to have 100% specificity and positive individuals were identified by both methods, the sensitivity of the Kato-Katz method was 20.8% and the PCR sensitivity was 98.7%. The Kappa index between the two techniques was 0.234, suggesting weak agreement. The assessment of a single faecal sample by PCR detected more cases of infection than the analysis of one sample with two slides using the Kato-Katz technique, suggesting that PCR can be a useful diagnostic tool, particularly in areas with low endemicity.
Resumo:
Quantitative polymerase chain reaction-high-resolution melting (qPCR-HRM) analysis was used to screen for mutations related to drug resistance in Mycobacterium tuberculosis. We detected the C526T and C531T mutations in the rifampicin resistance-determining region (RRDR) of the rpoB gene with qPCR-HRM using plasmid-based controls. A segment of the RRDR region from M. tuberculosis H37Rv and from strains carrying C531T or C526T mutations in the rpoB were cloned into pGEM-T vector and these vectors were used as controls in the qPCR-HRM analysis of 54 M. tuberculosis strains. The results were confirmed by DNA sequencing and showed that recombinant plasmids can replace genomic DNA as controls in the qPCR-HRM assay. Plasmids can be handled outside of biosafety level 3 facilities, reducing the risk of contamination and the cost of the assay. Plasmids have a high stability, are normally maintained in Escherichia coli and can be extracted in large amounts.
Resumo:
Cerebrospinal fluid (CSF) samples from clinically diagnosed patients with detectable Angiostrongylus canto-nensis-specific antibodies (n = 10), patients with clinically suspected cases that tested negative for A. cantonensis-an-tibodies (n = 5) and patients with cerebral gnathostomiasis (n = 2) and neurocysticercosis (n = 2) were examined by a single-step polymerase chain reaction (PCR) method using the AC primers for the 66-kDa native protein gene. The PCR method detected A. cantonensis DNA in CSF samples from four of 10 serologically confirmed angiostrongyliasis cases. The PCR results were negative for the remaining CSF samples. The nucleotide sequences of three positive CSF-PCR samples shared 98.8-99.2% similarity with the reference sequence of A. cantonensis. These results indicate the potential application of this PCR assay with clinical CSF samples for additional support in the confirmation of eosinophilic meningitis due to A. cantonensis.
Resumo:
Corynebacterium diphtheriae, Corynebacterium ulcerans and Corynebacterium pseudotuberculosis constitute a group of potentially toxigenic microorganisms that are related to different infectious processes in animal and human hosts. Currently, there is a lack of information on the prevalence of disease caused by these pathogens, which is partially due to a reduction in the frequency of routine laboratory testing. In this study, a multiplex polymerase chain reaction (mPCR) assay that can simultaneously identify and determine the toxigenicity of these corynebacterial species with zoonotic potential was developed. This assay uses five primer pairs targeting the following genes: rpoB (Corynebacterium spp), 16S rRNA (C. ulcerans and C. pseudotuberculosis), pld (C. pseudotuberculosis), dtxR (C. diphtheriae) and tox [diphtheria toxin (DT) ]. In addition to describing this assay, we review the literature regarding the diseases caused by these pathogens. Of the 213 coryneform strains tested, the mPCR results for all toxigenic and non-toxigenic strains of C . diphtheriae, C. ulcerans and C. pseudotuberculosis were in 100% agreement with the results of standard biochemical tests and PCR-DT. As an alternative to conventional methods, due to its advantages of specificity and speed, the mPCR assay used in this study may successfully be applied for the diagnosis of human and/or animal diseases caused by potentially toxigenic corynebacterial species.
Resumo:
Stenotrophomonas maltophilia is a multidrug-resistant nosocomial pathogen that is difficult to identify unequivocally using current methods. Accordingly, because the presence of this microorganism in a patient may directly determine the antimicrobial treatment, conventional polymerase chain reaction (PCR) and real-time PCR assays targeting 23S rRNA were developed for the specific identification of S. maltophilia. The PCR protocol showed high specificity when tested against other species of Stenotrophomonas, non-fermentative Gram-negative bacilli and 100 clinical isolates of S. maltophilia previously identified using the Vitek system.
Resumo:
Triatoma dimidiata is the most important Chagas disease insect vector in Central America as this species is primarily responsible for Trypanosoma cruzi transmission to humans, the protozoan parasite that causes Chagas disease. T. dimidiata sensu lato is a genetically diverse assemblage of taxa and effective vector control requires a clear understanding of the geographic distribution and epidemiological importance of its taxa. The nuclear ribosomal internal transcribed spacer 2 (ITS-2) is frequently used to infer the systematics of triatomines. However, oftentimes amplification and sequencing of ITS-2 fails, likely due to both the large polymerase chain reaction (PCR) product and polymerase slippage near the 5' end. To overcome these challenges we have designed new primers that amplify only the 3'-most 200 base pairs of ITS-2. This region distinguishes the ITS-2 group for 100% of known T. dimidiata haplotypes. Furthermore, we have developed a PCR-restriction fragment length polymorphism (RFLP) approach to determine the ITS-2 group, greatly reducing, but not eliminating, the number of amplified products that need to be sequenced. Although there are limitations with this new PCR-RFLP approach, its use will help with understanding the geographic distribution of T. dimidiata taxa and can facilitate other studies characterising the taxa, e.g. their ecology, evolution and epidemiological importance, thus improving vector control.
Resumo:
The aim of this study was to determine the genetic diversity of Giardia duodenalis present in a human population living in a northern Ecuadorian rain forest. All Giardia positive samples (based on an ELISA assay) were analysed using a semi-nested polymerase chain reaction-restriction fragment length polymorphism assay that targets the glutamate dehydrogenase (gdh) gene; those amplified were subsequently genotyped using NlaIV and RsaI enzymes. The gdh gene was successfully amplified in 74 of 154 ELISA positive samples; 69 of the 74 samples were subsequently genotyped. Of these 69 samples, 42 (61%) were classified as assemblage B (26 as BIII and 16 as BIV), 22 (32%) as assemblage A (3 as AI and 19 as AII) and five (7%) as mixed AII and BIII types. In this study site we observe similar diversity in genotypes to other regions in Latin America, though in contrast to some previous studies, we found similar levels of diarrheal symptoms in those individuals infected with assemblage B compared with those infected with assemblage A.
Resumo:
The polymerase chain reaction (PCR)-based methods for the diagnosis of malaria infection are expected to accurately identify submicroscopic parasite carriers. Although a significant number of PCR protocols have been described, few studies have addressed the performance of PCR amplification in cases of field samples with submicroscopic malaria infection. Here, the reproducibility of two well-established PCR protocols (nested-PCR and real-time PCR for the Plasmodium 18 small subunit rRNA gene) were evaluated in a panel of 34 blood field samples from individuals that are potential reservoirs of malaria infection, but were negative for malaria by optical microscopy. Regardless of the PCR protocol, a large variation between the PCR replicates was observed, leading to alternating positive and negative results in 38% (13 out of 34) of the samples. These findings were quite different from those obtained from the microscopy-positive patients or the unexposed individuals; the diagnosis of these individuals could be confirmed based on the high reproducibility and specificity of the PCR-based protocols. The limitation of PCR amplification was restricted to the field samples with very low levels of parasitaemia because titrations of the DNA templates were able to detect < 3 parasites/µL in the blood. In conclusion, conventional PCR protocols require careful interpretation in cases of submicroscopic malaria infection, as inconsistent and false-negative results can occur.