960 resultados para Polymer-coated urea
Resumo:
Breast cancer in its advanced stage has a high predilection to the skeleton. Currently, treatment options of breast cancer-related bone metastasis are restricted to only palliative therapeutic modalities. This is due to the fact that mechanisms regarding the breast cancer celI-bone colonisation as well as the interactions of breast cancer cells with the bone microenvironment are not fully understood, yet. This might be explained through a lack of appropriate in vitro and in vivo models that are currently addressing the above mentioned issue. Hence the hypothesis that the translation of a bone tissue engineering platform could lead to improved and more physiological in vitro and in vivo model systems in order to investigate breast cancer related bone colonisation was embraced in this PhD thesis. Therefore the first objective was to develop an in vitro model system that mimics human mineralised bone matrix to the highest possible extent to examine the specific biological question, how the human bone matrix influences breast cancer cell behaviour. Thus, primary human osteoblasts were isolated from human bone and cultured under osteogenic conditions. Upon ammonium hydroxide treatment, a cell-free intact mineralised human bone matrix was left behind. Analyses revealed a similar protein and mineral composition of the decellularised osteoblast matrix to human bone. Seeding of a panel of breast cancer cells onto the bone mimicking matrix as well as reference substrates like standard tissue culture plastic and collagen coated tissue culture plastic revealed substrate specific differences of cellular behaviour. Analyses of attachment, alignment, migration, proliferation, invasion, as well as downstream signalling pathways showed that these cellular properties were influenced through the osteoblast matrix. The second objective of this PhD project was the development of a human ectopic bone model in NOD/SCID mice using medical grade polycaprolactone tricalcium phosphate (mPCL-TCP) scaffold. Human osteoblasts and mesenchymal stem cells were seeded onto an mPCL-TCP scaffold, fabricated using a fused deposition modelling technique. After subcutaneous implantation in conjunction with the bone morphogenetic protein 7, limited bone formation was observed due to the mechanical properties of the applied scaffold and restricted integration into the soft tissue of flank of NOD/SCID mice. Thus, a different scaffold fabrication technique was chosen using the same polymer. Electrospun tubular scaffolds were seeded with human osteoblasts, as they showed previously the highest amount of bone formation and implanted into the flanks of NOD/SCID mice. Ectopic bone formation with sufficient vascularisation could be observed. After implantation of breast cancer cells using a polyethylene glycol hydrogel in close proximity to the newly formed bone, macroscopic communication between the newly formed bone and the tumour could be observed. Taken together, this PhD project showed that bone tissue engineering platforms could be used to develop an in vitro and in vivo model system to study cancer cell colonisation in the bone microenvironment.
Resumo:
In the past few years, remarkable progress has been made in unveiling novel and unique optical properties of strongly coupled plasmonic nanostructures. However, application of such plasmonic nanostructures in biomedicine remains challenging due to the lack of facile and robust assembly methods for producing stable nanostructures. Previous attempts to achieve plasmonic nano-assemblies using molecular ligands were limited due to the lack of flexibility that could be exercised in forming them. Here, we report the utilization of tailor-made hyperbranched polymers (HBP) as linkers to assemble gold nanoparticles (NPs) into nano-assemblies. The ease and flexibility in tuning the particle size and number of branch ends of a HBP makes it an ideal candidate as a linker, as opposed to DNA, small organic molecules and linear or dendrimeric polymers. We report a strong correlation of polymer (HBP) concentration with the size of the hybrid nano-assemblies and “hot-spot” density. We have shown that such solutions of stable HBP-gold nano-assemblies can be barcoded with various Raman tags to provide improved surface-enhanced Raman scattering (SERS) compared with non-aggregated NP systems. These Raman barcoded hybrid nano-assemblies, with further optimization of NP shape, size and “hot-spot” density, may find application as diagnostic tools in nanomedicine.
Resumo:
Transport between compartments of eukaryotic cells is mediated by coated vesicles. The archetypal protein coats COPI, COPII, and clathrin are conserved from yeast to human. Structural studies of COPII and clathrin coats assembled in vitro without membranes suggest that coat components assemble regular cages with the same set of interactions between components. Detailed three-dimensional structures of coated membrane vesicles have not been obtained. Here, we solved the structures of individual COPI-coated membrane vesicles by cryoelectron tomography and subtomogram averaging of in vitro reconstituted budding reactions. The coat protein complex, coatomer, was observed to adopt alternative conformations to change the number of other coatomers with which it interacts and to form vesicles with variable sizes and shapes. This represents a fundamentally different basis for vesicle coat assembly.
Resumo:
Graphene has attracted considerable interest over recent years due to its intrinsic mechanical, thermal and electrical properties. Incorporation of small quantity of graphene fillers into polymer can create novel nanocomposites with improved structural and functional properties. This review introduced the recent progress in fabrication, properties and potential applications of graphene-polymer composites. Recent research clearly confirmed that graphene-polymer nanocomposites are promising materials with applications ranging from transportation, biomedical systems, sensors, electrodes for solar cells and electromagnetic interference. In addition to graphene-polymer nanocomposites, this article also introduced the synergistic effects of hybrid graphene-carbon nanotubes (CNTs) on the properties of composites. Finally, some technical problems associated with the development of these nanocomposites are discussed.
Resumo:
Small interfering RNA silences specific genes by interfering with mRNA translation, and acts to modulate or inhibit specific biological pathways; a therapy that holds great promise in the cure of many diseases. However, the naked small interfering RNA is susceptible to degradation by plasma and tissue nucleases and due to its negative charge unable to cross the cell membrane. Here we report a new polymer carrier designed to mimic the influenza virus escape mechanism from the endosome, followed by a timed release of the small interfering RNA in the cytosol through a self-catalyzed polymer degradation process. Our polymer changes to a negatively charged and non-toxic polymer after the release of small interfering RNA, presenting potential for multiple repeat doses and long-term treatment of diseases.
Resumo:
In this work, we investigate how hydrogen sensing performance of thermally evaporated MoO3 nanoplatelets can be further improved by RF sputtering a thin layer of tantalum oxide (Ta2O5) or lanthanum oxide (La2O3). We show that dissociated hydrogen atoms cause the thin film layer to be polarised, inducing a measurable potential difference greater than that as reported previously. We attribute these observations to the presence of numerous traps in the thin layer; their states allow a stronger trapping of charge at the Pt-thin film oxide interface as compared to the MoO3 sensors without the coating. Under exposure to H2 (10 000 ppm) the maximum change in dielectric constant of 45.6 (at 260 °C) for the Ta2O5/MoO3 nanoplatelets and 31.6 (at 220 °C) for La2O3/MoO3 nanoplatelets. Subsequently, the maximum sensitivity for the Ta2O5/MoO3 is 16.87 (at 260 °C) and La2O3/MoO3 is 7.52 (at 300 °C).
Resumo:
Controlled drug delivery is a key topic in modern pharmacotherapy, where controlled drug delivery devices are required to prolong the period of release, maintain a constant release rate, or release the drug with a predetermined release profile. In the pharmaceutical industry, the development process of a controlled drug delivery device may be facilitated enormously by the mathematical modelling of drug release mechanisms, directly decreasing the number of necessary experiments. Such mathematical modelling is difficult because several mechanisms are involved during the drug release process. The main drug release mechanisms of a controlled release device are based on the device’s physiochemical properties, and include diffusion, swelling and erosion. In this thesis, four controlled drug delivery models are investigated. These four models selectively involve the solvent penetration into the polymeric device, the swelling of the polymer, the polymer erosion and the drug diffusion out of the device but all share two common key features. The first is that the solvent penetration into the polymer causes the transition of the polymer from a glassy state into a rubbery state. The interface between the two states of the polymer is modelled as a moving boundary and the speed of this interface is governed by a kinetic law. The second feature is that drug diffusion only happens in the rubbery region of the polymer, with a nonlinear diffusion coefficient which is dependent on the concentration of solvent. These models are analysed by using both formal asymptotics and numerical computation, where front-fixing methods and the method of lines with finite difference approximations are used to solve these models numerically. This numerical scheme is conservative, accurate and easily implemented to the moving boundary problems and is thoroughly explained in Section 3.2. From the small time asymptotic analysis in Sections 5.3.1, 6.3.1 and 7.2.1, these models exhibit the non-Fickian behaviour referred to as Case II diffusion, and an initial constant rate of drug release which is appealing to the pharmaceutical industry because this indicates zeroorder release. The numerical results of the models qualitatively confirms the experimental behaviour identified in the literature. The knowledge obtained from investigating these models can help to develop more complex multi-layered drug delivery devices in order to achieve sophisticated drug release profiles. A multi-layer matrix tablet, which consists of a number of polymer layers designed to provide sustainable and constant drug release or bimodal drug release, is also discussed in this research. The moving boundary problem describing the solvent penetration into the polymer also arises in melting and freezing problems which have been modelled as the classical onephase Stefan problem. The classical one-phase Stefan problem has unrealistic singularities existed in the problem at the complete melting time. Hence we investigate the effect of including the kinetic undercooling to the melting problem and this problem is called the one-phase Stefan problem with kinetic undercooling. Interestingly we discover the unrealistic singularities existed in the classical one-phase Stefan problem at the complete melting time are regularised and also find out the small time behaviour of the one-phase Stefan problem with kinetic undercooling is different to the classical one-phase Stefan problem from the small time asymptotic analysis in Section 3.3. In the case of melting very small particles, it is known that surface tension effects are important. The effect of including the surface tension to the melting problem for nanoparticles (no kinetic undercooling) has been investigated in the past, however the one-phase Stefan problem with surface tension exhibits finite-time blow-up. Therefore we investigate the effect of including both the surface tension and kinetic undercooling to the melting problem for nanoparticles and find out the the solution continues to exist until complete melting. The investigation of including kinetic undercooling and surface tension to the melting problems reveals more insight into the regularisations of unphysical singularities in the classical one-phase Stefan problem. This investigation gives a better understanding of melting a particle, and contributes to the current body of knowledge related to melting and freezing due to heat conduction.
Resumo:
Ultrasound has been examined previously as an alternative readout method for irradiated polymer gel dosimeters, with authors reporting varying dose response to ultrasound transmission measurements. In this current work we extend previous work to measure the broadband ultrasound attenuation (BUA) response of irradiated PAGAT gel dosimeters, using a novel ultrasound computed tomography system.
Resumo:
In this study x-ray CT has been used to produce a 3D image of an irradiated PAGAT gel sample, with noise-reduction achieved using the ‘zero-scan’ method. The gel was repeatedly CT scanned and a linear fit to the varying Hounsfield unit of each pixel in the 3D volume was evaluated across the repeated scans, allowing a zero-scan extrapolation of the image to be obtained. To minimise heating of the CT scanner’s x-ray tube, this study used a large slice thickness (1 cm), to provide image slices across the irradiated region of the gel, and a relatively small number of CT scans (63), to extrapolate the zero-scan image. The resulting set of transverse images shows reduced noise compared to images from the initial CT scan of the gel, without being degraded by the additional radiation dose delivered to the gel during the repeated scanning. The full, 3D image of the gel has a low spatial resolution in the longitudinal direction, due to the selected scan parameters. Nonetheless, important features of the dose distribution are apparent in the 3D x-ray CT scan of the gel. The results of this study demonstrate that the zero-scan extrapolation method can be applied to the reconstruction of multiple x-ray CT slices, to provide useful 2D and 3D images of irradiated dosimetry gels.
Resumo:
With a monolayer honeycomb-lattice of sp2-hybridized carbon atoms, graphene has demonstrated exceptional electrical, mechanical and thermal properties. One of its promising applications is to create graphene-polymer nanocomposites with tailored mechanical and physical properties. In general, the mechanical properties of graphene nanofiller as well as graphene-polymer interface govern the overall mechanical performance of graphene-polymer nanocomposites. However, the strengthening and toughening mechanisms in these novel nanocomposites have not been well understood. In this work, the deformation and failure of graphene sheet and graphene-polymer interface were investigated using molecular dynamics (MD) simulations. The effect of structural defects on the mechanical properties of graphene and graphene-polymer interface was investigated as well. The results showed that structural defects in graphene (e.g. Stone-Wales defect and multi-vacancy defect) can significantly deteriorate the fracture strength of graphene but may still make full utilization of corresponding strength of graphene and keep the interfacial strength and the overall mechanical performance of graphene-polymer nanocomposites.
Resumo:
Graphene-polymer nanocomposites have attracted considerable attention due to their unique properties, such as high thermal conductivity (~3000 W mK-1), mechanical stiffness (~ 1 TPa) and electronic transport properties. Relatively, the thermal performance of graphene-polymer composites has not been well investigated. The major technical challenge is to understand the interfacial thermal transport between graphene nanofiller and polymer matrix at small material length scale. To this end, we conducted molecular dynamics simulations to investigate the thermal transport in graphene-polyethylene nanocomposite. The influence of functionalization with hydrocarbon chains on the interfacial thermal conductivity was studied, taking into account of the effects of model size and thermal conductivity of graphene. The results are considered to contribute to development of new graphene-polymer nanocomposites with tailored thermal properties.
Resumo:
This work is motivated by the need to efficiently machine the edges of ophthalmic polymer lenses for mounting in spectacle or instrument frames. The polymer materials used are required to have suitable optical characteristics such high refractive index and Abbe number, combined with low density and high scratch and impact resistance. Edge surface finish is an important aesthetic consideration; its quality is governed by the material removal operation and the physical properties of the material being processed. The wear behaviour of polymer materials is not as straightforward as for other materials due to their molecular and structural complexity, not to mention their time-dependent properties. Four commercial ophthalmic polymers have been studied in this work using nanoindentation techniques which are evaluated as tools for probing surface mechanical properties in order to better understand the grinding response of polymer materials.
Resumo:
This research was a step forward in developing bond strength of CFRP strengthened steel hollow sections under tension loads. The studies have revealed the ultimate load carrying capacity of the CFRP strengthened steel hollow sections and the stress distribution for different orientations of the CFRP sheet at different layers. This thesis presents a series of experimental and finite element analysis to determine a good understanding of the bond characteristics of CFRP strengthened steel hollow sections.