197 resultados para Polyelectrolyte


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The subject of the present work is the synthesis of novel nanoscale objects, designed for self-propulsion under external actuation. The synthesized objects present asymmetric hybrid particles, consisting of a magnetic core and polymer flagella and their hydrodynamic properties under the actuation by external magnetic fields are investigated. The single-domain ferromagnetic cobalt ferrite nanoparticles are prepared by thermal decomposition of a mixture of metalorganic complexes based on iron (III) cobalt (II) in non-polar solvents. Further modification of the particles includes the growth of the silver particle on the surface of the cobalt ferrite particle to form a dumbbell-shaped heterodimer. Different possible mechanisms of dumbbell formation are discussed. A polyelectrolyte tail with ability to adjust the persistence length of the polymer, and thus the stiffness of the tail, by variation of pH is attached to the particles. A polymer tail consisting of a polyacrylic acid chain is synthesized by hydrolysis of poly(tert-butyl acrylate) obtained by atom transfer radical polymerization (ATRP). A functional thiol end-group enables selective attachment of the tail to the silver part of the dumbbell, resulting in an asymmetric functionalization of the dumbbells. The calculations on the propulsion force and the sperm number for the resulting particles reveal a theoretical possibility for the propelled motion. Under the actuation of the particles with flagella by alternating magnetic field an increase in the diffusion coefficient compared to non-actuated or non-functionalized particles is observed. Further development of such systems for application as nanomotors or in drug delivery is promising.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conductive polymers (CPS) are a class of carbon-based materials, capable of conducting electric current, characterized by metallic properties in combination with the intrinsic properties of conventional polymers. The structural model of the CP consists of a system of double π-conjugated on the backbone (polyene structure) which can easily undergo reversible doping reaching a wide range of conductivity. Thanks to their versatility and peculiar properties (mechanical flexibility, biocompatibility, transparency, ease of chemical functionalization, high thermal stability), CPS have revolutionized the science of materials giving rise to Organic Bioelectronics, the discipline resulting from the convergence between biology and electronics. The Poly (3,4-ethylenedioxythiophene) : poly (styrenesulfonate) (PEDOT: PSS), complex polyelectrolyte, in the form of a thin film, currently represents the reference standard in applications concerning Bioelectronics. In this project, two types of electrochemical sensors ink-jet printed on a flexible polymeric substrate, the polyethylene terephthalate, have been developed and characterized. The Drop on Demand (DOD) inkjet technology has allowed to control the positioning of fluid volumes of the order of picoliters with an accuracy of ± 25μm. This resulted in the creation of amperometric sensors and organic electrochemical transistors (OECT) all-PEDOT: PSS with high reproducibility. The sensors have been used for the determination of Ascorbic Acid (AA) which is currently considered an important benchmark in the field of sensors. In Cyclic Voltammetry, the amperometric sensor has detected AA at potentials less than 0.2 V vs. SCE thanks to the electrocatalytic properties of the PEDOT: PSS. On the other hand, the OECT detected AA concentrations equal to 10 nanomolar in Chronoamperometry. Furthermore, a promising new generation of all-printed OECTS, consisting of silver metal contacts, has been created. Preliminary results are presented.