959 resultados para Plastics Biodegradation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fenton reaction is thought to play an important role in wood degradation by brown-rot fungi. In this context, the effect of oxalic acid and pH on iron reduction by a biomimetic fungal chelator and on the adsorption/desorption of iron to/from wood was investigated. The results presented in this work indicate that at pH 2.0 and 4.5 and in the presence of oxalic acid, the phenolate chelator 2,3-dihydroxybenzoic acid (2,3-DHBA) is capable of reducing ferric iron only when the iron is complexed with oxalate to form Fe mono-oxalate (Fe(C(2)O(4))(+)). Within the pH range tested in this work, this complex formation occurs when the oxalate:Fe(3+) molar ratio is less than 20 (pH 2.0) or less than 10 (pH 4.5). When aqueous ferric iron was passed through a column packed with milled red spruce (Picea rubens) wood equilibrated at pH 2.0 and 4.5. it was observed that ferric iron binds to wood at pH 4.5 but not at pH 2.0, and the bound iron could then be released by application of oxalic acid at pH 4.5. The release of bound iron was dependent on the amount of oxalic acid applied in the column. When the amount of oxalate was at least 20-fold greater than the amount of iron bound to the wood, all bound iron was released. When Fe-oxalate complexes were applied to the milled wood column equilibrated in the pH range of 2-4.5, iron from Fe-oxalate complexes was bound to the wood only when the pH was 3.6 or higher and the oxalate:Fe(3+) molar ratio was less than 10. When 2,3-DHBA was evaluated for its ability to release iron bound to the milled wood, it was found that 2,3-DHBA possessed a greater affinity for ferric iron than the wood as 2,3-DHBA was capable of releasing the ferric iron bound to the wood in the pH range 3.6-5.5. These results further the understanding of the mechanisms employed by brown-rot fungi in wood biodegradation processes. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biopulping of Eucalyptus grandis wood chips with Phanerochaete chrysosporium RP-78 was evaluated under non-aseptic conditions in laboratory and mill wood-yard. The ability of P. chrysosporium to compete with indigenous fungi present in fresh wood chips was notorious under controlled laboratory experiments. A subsequent step involved an industrial test performed with 10-ton of fresh wood chips inoculated and maintained at 37 +/- 38 degrees C for 39 days in a biopulping pilot plant. Biotreated wood chips were pulped in a chemithermomechanical pulping mill. Net energy consumption during refining was 745 kWh ton(-1) and 610 kWh ton(-1) of processed pulp for control and biotreated wood chips, respectively. Accordingly, 18.5% net energy saving could be achieved. Biopulps contained lower shive content and had improved strength properties compared to control pulps. Tensile index improved from 25 +/- 1 N m g(-1) to 33.6 +/- 0.5 N m g(-1) and delamination strength from 217 +/- 19 kPa to 295 +/- 30 kPa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nature of the molecular structure of plastics makes the properties of such materials markedly temperature dependent. In addition, the continuous increase in the utilization of polymeric materials in many specific applications has demanded knowledge of their physical properties, both during their processing as raw material, as well as over the working temperature range of the final polymer product. Thermal conductivity, thermal diffusivity and specific heat, namely the thermal properties, are the three most important physical properties of a material that are needed for heat transfer calculations. Recently, among several different methods for the determination of the thermal diffusivity and thermal conductivity, transient techniques have become the preferable way for measuring thermal properties of materials. In this work, a very simple and low cost variation of the well known Angstrom method is employed in the experimental determination of the thermal diffusivity of some selected polymers. Cylindrical shaped samples 3 cm diameter and 7 cm high were prepared by cutting from long cylindrical commercial bars. The reproducibility is very good, and the results obtained were checked against results obtained by the hot wire technique, laser flash technique, and when possible, they were also compared with data found in the literature. Thermal conductivity may be then derived from the thermal diffusivity with the knowledge of the bulk density and the specific heat, easily obtained by differential scanning calorimetry. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents some improvements in the model proposed by Machado et al. [Machado SL, Carvalho MF, Vilar OM. Constitutive model for municipal solid waste. J Geotech Geoenviron Eng ASCE 2002; 128(11):940-51] now considering the influence of biodegradation of organic matter in the mechanical behavior of municipal solid waste. The original framework considers waste as composed of two component groups; fibers and organic paste. The particular laws of behavior are assessed for each component group and then coupled to represent waste behavior. The improvements introduced in this paper take into account the changes in the properties of fibers and mass loss due to organic matter depletion over time. Mass loss is indirectly calculated considering the MSW gas generation potential through a first order decay model. It is shown that as the biodegradation process occurs the proportion of fibers increases, however, they also undergo a degradation process which tends to reduce their ultimate tensile stress and Young modulus. The way these changes influence the behavior of MSW is incorporated in the final framework which captures the main features of the MSW stress-strain behavior under different loading conditions. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An investigation was performed regarding the application of a mechanically stirred anaerobic sequencing batch biofilm reactor containing immobilized biomass on inert polyurethane foam (AnSBBR) to the treatment of soluble metalworking fluids to remove organic matter and produce methane. The effect of increasing organic matter and reactor fill time, as well as shock load, on reactor stability and efficiency have been analyzed. The 5-L AnSBBR was operated at 30 A degrees C in 8-h cycles, agitation of 400 rpm, and treated 2.0 L effluent per cycle. Organic matter was increased by increasing the influent concentration (500, 1,000, 2,000, and 3,000 mg chemical oxygen demand (COD)/L). Fill times investigated were in the batch mode (fill time 10 min) and fed-batch followed by batch (fill time 4 h). In the batch mode, organic matter removal efficiencies were 87%, 86%, and 80% for influent concentrations of 500, 1,000, and 2,000 mgCOD/L (1.50, 3.12, and 6.08 gCOD/L.d), respectively. At 3,000 mgCOD/L (9.38 gCOD/L.d), operational stability could not be achieved. The reactor managed to maintain stability when a shock load twice as high the feed concentration was applied, evidencing the robustness of the reactor to potential concentration variations in the wastewater being treated. Increasing the fill time to 4 h did not improve removal efficiency, which was 72% for 2,000 mgCOD/L. Thus, gradual feeding did not improve organic matter removal. The concentration of methane formed at 6.08 gCOD/L was 5.20 mmolCH(4), which corresponded to 78% of the biogas composition. The behavior of the reactor during batch and fed-batch feeding could be explained by a kinetic model that considers organic matter consumption, production, and consumption of total volatile acids and methane production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study verifies the potential applicability of horizontal-flow anaerobic immobilized biomass (HAIB) reactors to pentachlorophenol (PCP) dechlorination. Two bench-scale HAIB reactors (R1 and R2) were filled with cubic polyurethane foam matrices containing immobilized anaerobic sludge. The reactors were then continuously fed with synthetic wastewater consisting of PCP, glucose, acetic acid, and formic acid as co-substrates for PCP anaerobic degradation. Before being immobilized in polyurethane foam matrices, the biomass was exposed to wastewater containing PCP in reactors fed at a semi-continuous rate of 2.0 mu g PCP g(-1) VS. The applied PCP loading rate was increased from 0.05 to 2.59 mg PCP l(-1) day(-1) for RI, and from 0.06 to 4.15 mg PCP l(-1) day(-1) for R2. The organic loading rates (OLR) were 1.1 and 1.7 kg COD m(-3) day(-1) at hydraulic retention times (HRT) of 24 h for R1 and 18 In for R2. Under such conditions, chemical oxygen demand (COD) removal efficiencies of up to 98% were achieved in the HAIB reactors. Both reactors exhibited the ability to remove 97% of the loaded PCP. Dichlorophenol (DCP) was the primary chlorophenol detected in the effluent. The adsorption of PCP and metabolites formed during PCP degradation in the packed bed was negligible for PCP removal efficiency. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work reports on the anaerobic treatment of gasoline-contaminated groundwater in a pilot-scale horizontal-flow anaerobic immobilized biomass reactor inoculated with a methanogenic consortium. BTEX removal rates varied from 59 to 80%, with a COD removal efficiency of 95% during the 70 days of in situ trial. BTEX removal was presumably carried out by microbial syntrophic interactions, and at the observed concentrations, the interactions among the aromatic compounds may have enhanced overall biodegradation rates by allowing microbial growth instead of co-inhibiting biodegradation. There is enough evidence to support the conclusion that the pilot-scale reactor responded similarly to the lab-scale experiments previously reported for this design. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study evaluated the degradation of formaldehyde in a bench-scale anaerobic sequencing batch reactor, which contained biomass immobilized in polyurethane foam matrices. The reactor was operated for 212 days at 35 C with 8 h sequential cycles, under different affluent formaldehyde concentrations ranging from 31.6 to 1104.4 mg/L (formaldehyde loading rates from 0.08 to 2.78 kg/m(3) day). The results indicate excellent reactor stability and over 99% efficiency in formaldehyde removal, with average effluent formaldehyde concentration of 3.6 + 1.7 mg/L. Formaldehyde degradation rates increased from 204.9 to 698.3 mg/L h as the initial concentration of formaldehyde was increased from around 100 to around 1100 mg/L. However, accumulation of organic matter was observed in the effluent (chemical oxygen demand (COD) values above 500 mg/L) due to the presence of non-degraded organic acids, especially acetic and propionic acids, This observation poses an important question regarding the anaerobic route of formaldehyde degradation, which might differ Substantially from that reported in the literature. The anaerobic degradation pathway can be associated with the formation of long-chain oligomers from formaldehyde. Such long- or short-chain polymers are probably the precursors of organic acid formation by means of acidogenic anaerobic microorganisms. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two horizontal-flow anaerobic immobilized biomass reactors (HAIB) were used to study the degradation of the LAS surfactant: one filled with charcoal (HAIB1) and the other with a mixed bed of expanded clay and polyurethane foam (HAIB2). The reactors were fed with synthetic substrate supplemented with 14 mg l(-1) of LAS, kept at 30 +/- 2 degrees C and operated with a hydraulic retention time (HRT) of 12 h. The surfactant was quantified by HPLC. Spatial variation analyses were done to quantify organic matter and LAS consumption along the reactor length. The presence of the surfactant in the load did not affect the removal of organic matter (COD), which was close to 90% in both reactors for an influent COD of 550 ring l(-1). The results of a mass balance indicated that 28% of all LAS added to HAIB1 was removed by degradation. HAIB2 presented 27% degradation. Molecular biology techniques revealed microorgan isms belonging the uncultured Holophaga sp., uncultured delta Proteobacterium, uncultured Verrucomicrobium sp., Bacteroides sp. and uncultured gamma Proteobacterium sp. The reactor with biomass immobilized on charcoal presented lower adsorption and a higher kinetic degradation coefficient. So, it was the most suitable support for LAS anaerobic treatment. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The anaerobic biological treatment of pentachlorophenol (PCP) and methanol as the main carbon source was investigated in a horizontal-flow anaerobic immobilized biomass (HAIB) reactor at 30 +/- 1 degrees C, during a 220-day trial period. The reactor biomass was developed as an attached biofilm on polyurethane foam particles, with 24 h of hydraulic retention time. The PCP concentrations, which ranged from 2.0 to 13.0 mg/L, were controlled by adding synthetic substrate. The HAIB reactor reduced 97% of COD and removed 99% of PCP. The microbial biofilm communities of the HAIB reactor amended with PCP, without previous acclimatization, were characterized by polymerase chain reaction (PCR) and amplified ribosomal DNA restriction analysis (ARDRA) with specific Archaea oligonucleotide primers. The ARDRA technique provided an adequate analysis of the community, revealing the profile of the selected population along the reactor. The biomass activities in the HAIB reactor at the end of the experiments indicated the development of PCP degraders and the maintenance of the population of methanogenic Archaea, ensuring the high efficiency of the system treating PCP with added methanol as the cosubstrate. The use of the simplified ARDRA method enabled us to monitor the microbial population with the addition of high concentrations of toxic compounds and highlighting a selection of microorganisms in the biofilm. (C) 2008 Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this work was to assess the degradation of linear alkylbenzene sulfonate (LAS) in a horizontal-flow anaerobic immobilized biomass (HAIB) reactor. The reactor was filled with polyurethane foam where the sludge from a sanitary sewage treatment was immobilized. The hydraulic detention time (HDT) used in the experiments was of 12 h. The reactor was fed with synthetic substrate (410 mg l(-1) of meat extract, 115 mg l(-1) of starch, 80 mg l(-1) of saccharose, 320 mg l(-1) of sodium bicarbonate and 5 ml l(-1)of salt solution) in the following stages of operation: SI-synthetic substrate, SII-synthetic substrate with 7 mg l(-1) of LAS, SIII-synthetic substrate with 14 mg l(-1) of LAS and SIV-synthetic substrate containing yeast extract (substituting meat extract) and 14 mg l(-1) of LAS, without starch. At the end of the experiment (313 days) a degradation of similar to 35% of LAS was achieved. The higher the concentration of LAS, the greater the amount of foam for its adsorption. This is necessary because the isotherm of LAS adsorption in the foam is linear for the studied concentrations (2 to 50 mg l(-1)). Microscopic analyses of the biofilm revealed diverse microbial morphologies, while Denaturing Gradient Gel Eletrophoresis (DGGE) profiling showed variations in the population of total bacteria and sulphate-reducing bacteria (SRB). The 16S rRNA gene sequencing and phylogenetic analyses revealed that the members of the order Clostridiales were the major components of the bacterial community in the last reactor operation step.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aimed to determine the efficiency of an anaerobic stirred sequencing-batch reactor containing granular biomass for the degradation of linear alkylbenzene sulfonate (LAS), a surfactant present in household detergent. The bioreactor was monitored for LAS concentrations in the influent, effluent and sludge, pH, chemical oxygen demand, bicarbonate alkalinity, total solids, and volatile solids. The degradation of LAS was found to be higher in the absence of co-substrates (53%) than in their presence (24-37%). Using the polymerase chain reaction and denaturing gradient gel electrophoresis (PCR/DGGE), we identified populations of microorganisms from the Bacteria and Archaea domains. Among the bacteria, we identified uncultivated populations of Arcanobacterium spp. (94%) and Opitutus spp. (96%). Among the Archaea, we identified Methanospirillum spp. (90%), Methanosaeta spp. (98%), and Methanobacterium spp. (96%). The presence of methanogenic microorganisms shows that LAS did not inhibit anaerobic digestion. Sampling at the last stage of reactor operation recovered 61 clones belonging to the domain bacteria. These represented a variety of phyla: 34% shared significant homology with Bacteroidetes, 18% with Proteobacteria, 11% with Verrucomicrobia, 8% with Fibrobacteres, 2% with Acidobacteria, 3% with Chlorobi and Firmicutes, and 1% with Acidobacteres and Chloroflexi. A small fraction of the clones (13%) were not related to any phylum. Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with the use of simplified methods to predict methane generation in tropical landfills. Methane recovery data obtained on site as part of a research program being carried Out at the Metropolitan Landfill, Salvador, Brazil, is analyzed and used to obtain field methane generation over time. Laboratory data from MSW samples of different ages are presented and discussed: and simplified procedures to estimate the methane generation potential, L(o), and the constant related to the biodegradation rate, k are applied. The first order decay method is used to fit field and laboratory results. It is demonstrated that despite the assumptions and the simplicity of the adopted laboratory procedures, the values L(o) and k obtained are very close to those measured in the field, thus making this kind of analysis very attractive for first approach purposes. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four different architectural acrylic paint formulations were tested by exposure to weathering for 7 years in the urban site of Sao Paulo and the coastal site of Ubatuba, South-East Brazil. Surface discolorations and detachment of coatings were assessed and the components of the biofilms were identified by standard microbiological methods. The painted surfaces of the mortar panels were much more discolored in Ubatuba, where major components of the biofilms were the cyanobacteria Gloeocapsa and Scytonema. In two of the four paint films, a pink coloration on the surface at this coastal site, caused mainly by red-pigmented Gloeocapsa, produced high discoloration ratings, but low degradation (as measured by detachment). Biofilms in Sao Paulo contained the same range of phototrophs, but in lesser quantity. However, fungal numbers, as determined by plating, were higher. Detachment ratings in this urban site were only slightly lower than in Ubatuba. The matt paint performed worst of the four, with silk and semi-gloss finishes giving lowest biodeterioration ratings. The matt elastomeric paint performed well at both sites, apart from becoming almost 100% covered by the pink biofilm in Ubatuba. Unpainted mortar panels became intensely discolored with a black biofilm, showing that all the paints had achieved one of their objectives, that of surface protection of the substrate. The value of PVC (pigment volume content) as an indicator of coatings biosusceptibility, is questioned. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cracking formation during the photodegradation of polypropylene (PP) plates (1 mm thickness), with (PPOx) and without pro-oxidant [PP), has been investigated. The plates were produced by extrusion in an industrial production line and were exposed to ultraviolet radiation in the laboratory for periods of up to 480 hr. The samples were investigated by infrared spectroscopy- FTIR, optical light microscopy, differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The results showed that the extension of photodegradation process is more intense for PPOx than for PP samples. For both samples, cracks were formed at the surface perpendicularly to the flow-lines. However the cracks frequency was different for both samples and sides of sample. The crack frequency was correlated with chain orientation, A(110); it was shown that lower degrees of orientation resulted in lower crack frequency. POLYM. ENG. SCI., 48:365-372, 2008. (c) 2007 Society of Plastics Engineers.