979 resultados para Plantas cultivadas
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Two experiments were carried out under greenhouse conditions to study the accumulation and distribution of dry mass and macronutrients in maize and Ipomoea hederifolia. Plants of both species had grown, separately, in pots with sand substrate and irrigation with nutrient solution. Treatments were represented by the times of evaluation, realized in intervals of 14 days, starting at 21 days after emergence (DAE). A maize plant showed slight growth up to 30 DAE, when dry mass allocation was higher in roots and leaves (80%); while an I. hederifolia plant, up to 50 DAE, when the allocation of dry mass was higher in offshoots and leaves (79). Dry mass accumulation was almost five times greater in maize (134 g per plant) than in I. hederifolia (29 g per plant). The average values of N and K contents were greater in I. hederifolia. Maximum accumulations of macronutrients by maize were 1,431; 474; 1,832; 594; 340, and 143 mg per plant, while by I. hederifolia, 727; 52; 810; 350; 148, and 65 mg per plant, for N, P, K, Ca, Mg, and S, respectively. Mean accumulation rate of dry mass and macronutrients by maize plants was crescent up to 87 DAE, reaching the maximum value at 103 DAE; while being crescent up to 121 DAE by I. hederifolia plants, reaching the maximum value at 138 DAE. Thus, beyond the interference on harvesting process, a population of I. hederifolia also can compete with maize crop for nutrients.
Resumo:
The effects on soil chemical properties brought about by cover crops vary considerably. This study was conducted to evaluate nutrient uptake by five cover crops used for grain, seed and forage production at different seed densities per hectare, as well as uptake by spontaneous vegetation, and their effect on the chemical properties of two Oxisols when grown in rotation with soybean and corn. The experiments were set up in Votuporanga, SP, Brazil and Selvíria, MS, Brazil in March 2008 after conventional soil tillage. A randomized complete block experimental design was used with four replications with the following cover crops at different seed densities: Sorghum bicolor at 6, 7 and 8 kg ha-1; Pennisetum americanum at 10, 15 and 20 kg ha-1; Sorghum sudanense at 12, 15 and 18 kg ha-1; hybrid of Sorghum bicolor with Sorghum sudanense at 8, 9 and 10 kg ha-1; and Urochloa ruziziensis at 8, 12 and 16 kg ha-1. We also used a spontaneous vegetation control. After management of the cover crops, in the first year of study, soybean was sown in no-tillage system and, in the second year, corn was sown, also in a no-tillage system. We evaluated the dry matter yield of different cover crops, nutrient uptake by the cover crops, and the chemical changes in the soil. It was found that in clayey soils with high aluminum content, as in Selvíria, sudan grass at a seed density of 18 kg ha-1, and sorghum at a seed density of 6 kg ha-1, in combination with liming, contributed to reduction of aluminum content and high potential acidity and an increase in base saturation. The different seed densities of each cover crop did not affect the dry matter yield of the cover crop itself, but affected nitrogen uptake of the hybrid Sorghum bicolor with Sorghum sudanense at a seed density of 10 kg ha-1, with lower uptake than at a seed density of 8 kg ha-1. Seed density also affected the organic matter content in the soil with sudan grass, with the seed density of 15 kg ha-1 providing more organic matter content than a seed density of 18 kg ha-1.
Resumo:
Pós-graduação em Agronomia (Horticultura) - FCA
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA