999 resultados para Pinus pinaster forest
Resumo:
The aim of this study was to explore potential causes and mechanisms for the sequence and temporal pattern of tree taxa, specifically for the shift from shrub-tundra to birch–juniper woodland during and after the transition from the Oldest Dryas to the Bølling–Allerød in the region surrounding the lake Gerzensee in southern Central Europe. We tested the influence of climate, forest dynamics, community dynamics compared to other causes for delays. For this aim temperature reconstructed from a δ18O-record was used as input driving the multi-species forest-landscape model TreeMig. In a stepwise scenario analysis, population dynamics along with pollen production and transport were simulated and compared with pollen-influx data, according to scenarios of different δ18O/temperature sensitivities, different precipitation levels, with/without inter-specific competition, and with/without prescribed arrival of species. In the best-fitting scenarios, the effects on competitive relationships, pollen production, spatial forest structure, albedo, and surface roughness were examined in more detail. The appearance of most taxa in the data could only be explained by the coldest temperature scenario with a sensitivity of 0.3‰/°C, corresponding to an anomaly of − 15 °C. Once the taxa were present, their temporal pattern was shaped by competition. The later arrival of Pinus could not be explained even by the coldest temperatures, and its timing had to be prescribed by first observations in the pollen record. After the arrival into the simulation area, the expansion of Pinus was further influenced by competitors and minor climate oscillations. The rapid change in the simulated species composition went along with a drastic change in forest structure, leaf area, albedo, and surface roughness. Pollen increased only shortly after biomass. Based on our simulations, two alternative potential scenarios for the pollen pattern can be given: either very cold climate suppressed most species in the Oldest Dryas, or they were delayed by soil formation or migration. One taxon, Pinus, was delayed by migration and then additionally hindered by competition. Community dynamics affected the pattern in two ways: potentially by facilitation, i.e. by nitrogen-fixing pioneer species at the onset, whereas the later pattern was clearly shaped by competition. The simulated structural changes illustrate how vegetation on a larger scale could feed back to the climate system. For a better understanding, a more integrated simulation approach covering also the immigration from refugia would be necessary, for this combines climate-driven population dynamics, migration, individual pollen production and transport, soil dynamics, and physiology of individual pollen production.
Resumo:
Aim Our aim was to discriminate different species of Pinus via pollen analysis in order to assess the responses of particular pine species to orbital and millennial-scale climate changes, particularly during the last glacial period. Location Modern pollen grains were collected from current pine populations along transects from the Pyrenees to southern Iberia and the Balearic Islands. Fossil pine pollen was recovered from the south-western Iberian margin core MD95-2042. Methods We measured a set of morphological traits of modern pollen from the Iberian pine species Pinus nigra, P. sylvestris, P. halepensis, P. pinea and P. pinaster and of fossil pine pollen from selected samples of the last glacial period and the early to mid-Holocene. Classification and regression tree (CART) analysis was used to establish a model from the modern dataset that discriminates pollen from the different pine species and allows identification of fossil pine pollen at the species level. Results The CART model was effective in separating pollen of P. nigra and P. sylvestris from that of the Mediterranean pine group (P. halepensis, P. pinea and P. pinaster). The pollen of Pinus nigra diverged from that of P. sylvestris by having a more flattened corpus. Predictions using this model suggested that fossil pine pollen is mainly from P. nigra in all the samples analysed. Pinus sylvestris was more abundant in samples from Greenland stadials than Heinrich stadials, whereas Mediterranean pines increased in samples from Greenland interstadials and during the early to mid-Holocene. Main conclusions Morphological parameters can be successfully used to increase the taxonomic resolution of fossil pine pollen at the species level for the highland pines (P. nigra and P. sylvestris) and at the group of species level for the Mediterranean pines. Our study indicates that P. nigra was the dominant component of the last glacial south-western/central Iberian pinewoods, although the species composition of these woodlands varied in response to abrupt climate changes.
Resumo:
Climatic relationships were established in two 210Pb dated pollen sequences from small mires closely surrounded by forest just below actual forest limits (but about 300 m below potential climatic forest limits) in the northern Swiss Alps (suboceanic in climate; mainly with Picea) and the central Swiss Alps (subcontinental; mainly Pinus cembra and Larix) at annual or near-annual resolution from ad 1901 to 1996. Effects of vegetational succession were removed by splitting the time series into early and late periods and by linear detrending. Both pollen concentrations detrended by the depth-age model and modified percentages (in which counts of dominant pollen types are down-weighted) are correlated by simple linear regression with smoothed climatic parameters with one-and two-year timelags, including average monthly and April/September daylight air temperatures and with seasonal and annual precipitation sums. Results from detrended pollen concentrations suggest that peat accumulation is favoured in the northern-Alpine mire either by early snowmelt or by summer precipitation, but in the central-Alpine mire by increased precipitation and cooler summers, suggesting a position of the northern-Alpine mire near the upper altitudinal limit of peat formation, but of the central-Alpine mire near the lower limit. Results from modified pollen percentages indicate that pollen pro duction by plants growing near their upper altitudinal limit is limited by insufficient warmth in summer, and pollen production by plants growing near their lower altitudinal limit is limited by too-high temperatures. Only weakly significant pollen/climate relationships were found for Pinus cembra and Larix, probably because they experience little climatic stress growing 300 m below the potential climatic forest limit.
Resumo:
Annual pollen influx has been monitored in short transects across the altitudinal tree limit in four areas of the Swiss Alps with the use of modified Tauber traps placed at the ground surface. The study areas are Grindelwald (8 traps), Aletsch (8 traps), Simplon (5 traps), and Zermatt (5 traps). The vegetation around the traps is described. The results obtained are: (1) Peak years of pollen influx (one or two in seven years) follow years of high average air temperatures during June–November of the previous year for Larix and Picea, and less clearly for Pinus non-cembra, but not at all for Pinus cembra and Alnus viridis. (2) At the upper forest limit, the regional pollen influx of trees (trees absent within 100 m of the pollen trap) relates well to the average basal area of the same taxon within 10–15 km of the study areas for Pinus cembra, Larix, and Betula, but not for Picea, Pinus non-cembra, and Alnus viridis. (3) The example of Zermatt shows that pollen influx characterises the upper forest limit, if the latter is more or less intact. (4) Presence/absence of Picea, Pinus cembra, Larix, Pinus non-cembra, and Alnus viridis trees within 50–100 m of the traps is apparent in the pollen influx in peak years of pollen influx but not in other years, suggesting that forest-limit trees produce significant amounts of pollen only in some years. (5) Pollen influx averaged over the study period correlates well with the abundance of plants around the pollen traps for conifer trees (but not deciduous trees), Calluna, Gramineae, and Cyperaceae, and less clearly so Compositae Subfam. Cichorioideae and Potentilla-type. (6) Influx of extra-regional pollen derived from south of the Alps is highest in Simplon, which is open to southerly winds, slightly lower in Aletsch lying just north of Simplon, and lowest in Zermatt sheltered from the south by high mountains and Grindelwald lying north of the central Alps.
Resumo:
For over 3 centuries, diameter-limit harvesting has been a predominant logging method in the northeastern United States. Silvicultural theory asserts that such intensively selective harvesting can lead to genetic degradation. A decrease in softwood productivity has recently been reported in Maine - has a long history of dysgenic selection degraded the genetic resources of Maine softwoods, contributing to a decrease in growth and productivity? This study examines two aspects of potential implications of diameter-limit harvesting: effects on residual phenotypes of red spruce and impacts on genetic diversity of white pine. Radial growth of residual red spruce trees in stands experiencing 50 years of fixed diameter-limit harvesting was measured using annual increment rings and compared with residual red spruce trees in positive selection stands. Trees remaiaing after several rounds of diameter-limit harvesting exhibited sigdicantl y smaller radial sizes throughout their lives, and displayed significantly slower growth rates for the first 80 years of measured growth. These results strongly suggest that the largest and fastest-growing genotypes and their respective gene complexes determining good radial growth have been removed from the diameter-limit stand. Dysgenic selection can be observed in fixed diarneter-limit stands, resulting in a diminished genetic resource and decreased residual stand value. To examine more direct genetic implications of long-term diameter-limit harvesting, microsatellite DNA markers were implemented to study genetic diversity of eastern white pine in Maine. Three age groups of trees were studied: mature trees older than 200 years, juvenile trees 5-30 years old, and embryos. Trees were genotyped at 10 microsatellite loci. Overall genetic diversity levels of eastern white pine in Maine were extremely high, with an average observed heterozygosity of 0.762. Genetic differentiation was minimal among and between all three age groups, although an excess of heterozygotes was shown in the mature and juvenile groups that was not reflected in the embryo group, which actually had a slight heterozygote deficiency. Allele frequencies did not differ significantly between age groups, but did reveal more rare and low frequency alleles in the embryo groups than in the mature group. Overall, low frequency alleles comprise the largest portion of alleles in the sample population, with no common alleles evident overall. These results suggest that significant genetic degradation has either not occurred for white pine, or that the results of dysgenic selection have not yet emerged. It is clear, however, that selective harvesting could result in a loss of low frequency alleles, which are a primary reserve of evolutionary potential in a species. Implications of these studies affect industrial forestry, regional economics, and ecological concerns for the northeast. Long-term diameter-limit harvesting can lead to a degradation of residual phenotypes, and an overall decrease in stand quality. Potentially, a loss of low frequency, locally adapted alleles could result in a decrease of allelic richness and degradation of the regidnal genetic resource. Decreased genetic variation can lead to seriously limited evolutionary potential of species and ecosystems, particularly in rapidly changing environments. Based on these findings, I recommend a reassessment of any harvesting prescription that includes fixed diameter-limit removals, particularly for species that have low natural genetic diversity levels or a limited natural range, such as red spruce. Maintenance of a healthy genetic reserve can avoid effects of dysgenic harvesting.