469 resultados para Phenols.
Resumo:
In present research, headspace solid-phase microextraction (HS-SPME) followed by gas chromatography–mass spectrometry (GC–qMS), was evaluated as a reliable and improved alternative to the commonly used liquid–liquid extraction (LLE) technique for the establishment of the pattern of hydrolytically released components of 7 Vitis vinifera L. grape varieties, commonly used to produce the world-famous Madeira wine. Since there is no data available on their glycosidic fractions, at a first step, two hydrolyse procedures, acid and enzymatic, were carried out using Boal grapes as matrix. Several parameters susceptible of influencing the hydrolytic process were studied. The best results, expressed as GC peak area, number of identified components and reproducibility, were obtained using ProZym M with b-glucosidase activity at 35 °C for 42 h. For the extraction of hydrolytically released components, HS-SPME technique was evaluated as a reliable and improved alternative to the conventional extraction technique, LLE (ethyl acetate). HS-SPME using DVB/CAR/PDMS as coating fiber displayed an extraction capacity two fold higher than LLE (ethyl acetate). The hydrolyzed fraction was mainly characterized by the occurrence of aliphatic and aromatic alcohols, followed by acids, esters, carbonyl compounds, terpenoids, and volatile phenols. Concerning to terpenoids its contribution to the total hydrolyzed fraction is highest for Malvasia Cândida (23%) and Malvasia Roxa (13%), and their presence according previous studies, even at low concentration, is important from a sensorial point of view (can impart floral notes to the wines), due to their low odor threshold (μg/L). According to the obtained data by principal component analysis (PCA), the sensorial properties of Madeira wines produced by Malvasia Cândida and Malvasia Roxa could be improved by hydrolysis procedure, since their hydrolyzed fraction is mainly characterized by terpenoids (e.g. linalool, geraniol) which are responsible for floral notes. Bual and Sercial grapes are characterized by aromatic alcohols (e.g. benzyl alcohol, 2-phenylethyl alcohol), so an improvement in sensorial characteristics (citrus, sweet and floral odors) of the corresponding wines, as result of hydrolytic process, is expected.
Resumo:
Untreated effluents that reach surface water affect the aquatic life and humans. This study aimed to evaluate the wastewater s toxicity (municipal, industrial and shrimp pond effluents) released in the Estuarine Complex of Jundiaí- Potengi, Natal/RN, through chronic quantitative e qualitative toxicity tests using the test organism Mysidopsis Juniae, CRUSTACEA, MYSIDACEA (Silva, 1979). For this, a new methodology for viewing chronic effects on organisms of M. juniae was used (only renewal), based on another existing methodology to another testorganism very similar to M. Juniae, the M. Bahia (daily renewal).Toxicity tests 7 days duration were used for detecting effects on the survival and fecundity in M. juniae. Lethal Concentration 50% (LC50%) was determined by the Trimmed Spearman-Karber; Inhibition Concentration 50% (IC50%) in fecundity was determined by Linear Interpolation. ANOVA (One Way) tests (p = 0.05) were used to determinate the No Observed Effect Concentration (NOEC) and Low Observed Effect Concentration (LOEC). Effluents flows were measured and the toxic load of the effluents was estimated. Multivariate analysis - Principal Component Analysis (PCA) and Correspondence Analysis (CA) - identified the physic-chemical parameters better explain the patterns of toxicity found in survival and fecundity of M. juniae. We verified the feasibility of applying the only renewal system in chronic tests with M. Juniae. Most efluentes proved toxic on the survival and fecundity of M. Juniae, except for some shrimp pond effluents. The most toxic effluent was ETE Lagoa Aerada (LC50, 6.24%; IC50, 4.82%), ETE Quintas (LC50, 5.85%), Giselda Trigueiro Hospital (LC50, 2.05%), CLAN (LC50, 2.14%) and COTEMINAS (LC50, IC50 and 38.51%, 6.94%). The greatest toxic load was originated from ETE inefficient high flow effluents, textile effluents and CLAN. The organic load was related to the toxic effects of wastewater and hospital effluents in survival of M. Juniae, as well as heavy metals, total residual chlorine and phenols. In industrial effluents was found relationship between toxicity and organic load, phenols, oils and greases and benzene. The effects on fertility were related, in turn, with chlorine and heavy metals. Toxicity tests using other organisms of different trophic levels, as well as analysis of sediment toxicity are recommended to confirm the patterns found with M. Juniae. However, the results indicate the necessity for implementation and improvement of sewage treatment systems affluent to the Potengi s estuary
Resumo:
Textile production has been considered as an activity of high environmental impact due to the generation of large volumes of waste water with high load of organic compounds and strongly colored effluents, toxic and difficult biodegradability. This thesis deals with obtaining porous alumina ceramic membranes for filtration of textile effluent in the removal of contaminants, mainly color and turbidity. Two types of alumina with different particle sizes as a basis for the preparation of formulation for mass production of ceramic samples and membranes. The technological properties of the samples were evaluated after using sintering conditions: 1,350ºC-2H, 1,450ºC-30M, 1,450ºC-2H, 1,475ºC-30M and 1,475ºC-2H. The sintered samples were characterized by XRD, XRF, AG, TG, DSC, DL, AA, MEA, RL, MRF-3P, SEM and Intrusion Porosimetry by Mercury. After the characterization, a standard membrane was selected with their respective sintering condition for the filterability tests. The effluent was provided by a local Textile Industry and characterized at the entry and exit of the treatment plant. A statistical analysis was used to study the effluent using the following parameters: pH, temperature, EC, SS, SD, oil and grease, turbidity, COD, DO, total phosphorus, chlorides, phenols, metals and fecal coliform. The filtered effluent was evaluated by using the same parameters. These results demonstrate that the feasibility of the use of porous alumina ceramic membranes for removing contaminants from textile effluent with improved average pore size of 0.4 micrometre (distribution range varying from 0,025 to 2.0 micrometre), with total porosity of 29.66%, and average percentages of color removal efficiency of 89.02%, 92.49% of SS, turbidity of 94.55%, metals 2.70% (manganese) to 71.52% (iron) according to each metal and COD removal of 72.80%
Resumo:
Produced water is the main effluent linked to the activity of extraction of oil and their caring management is necessary due to the large volume involved, to ensure to minimize the negative impacts of discharges of these waters in the environment. This study aimed to analyze the use of retorted shale, which is a reject from the pyrolysis of pirobituminous shale, as adsorbent for the removal of phenols in produced water. The material was characterized by different techniques (grain sized analysis, thermal analysis, BET, FRX, FT-IR, XRD and SEM), showing the heterogeneity in their composition, showing its potential for the removal of varied compounds, as well as the phenols and their derivatives. For the analysis of the efficiency of the oil shale for the adsorption process, assays of adsorption balance were carried through, and also kinetic studies and dynamics adsorption, in the ETE of the UTPF of Petrobras, in Guamaré-RN. The balance assays shown a bigger conformity with the model of Langmuir and the kinetic model more adjusted to describe the adsorption of phenols in retorted shale was of pseudo-second order. The retorted shale presented a low capacity of adsorption of phenols (1,3mg/g), when related to others conventional adsorbents, however it is enough to the removal of these composites in concentrations presented in the produced water of the UTPF of Guamaré. The assays of dynamics adsorption in field had shown that the concentration of phenol in the effluent was null until reaching its rupture (58 hours). The results showed the possibility of use of the reject for removal of phenols in the final operations of the treatment process, removing as well, satisfactorily, the color and turbidity of the produced water, with more than 90% of removal
Resumo:
A anomalia do epicarpo da goiaba, comumente relatada por agricultores e técnicos como o anelamento juvenil da goiaba, tem causado preocupação devido à desinformação sobre o assunto. O objetivo deste estudo foi analisar quimicamente as concentrações de substâncias fenólicas e carotenoides na região do epicarpo de goiabas afetadas pelo anelamento, visando a caracterizar essa anomalia previamente relatada. Foram analisadas substâncias fenólicas (taninos, flavonas/flavonóis, antocianinas e fenóis totais) e carotenoides em epicarpos de frutos verdes e maduros de goiabeiras cv. Paluma, com e sem anomalia. O delineamento experimental adotado foi o inteiramente casualizado, sendo estabelecidos seis tratamentos com o epicarpo dos frutos maduro sem anomalia na região inferior (FMSI); frutos maduros sem injuria na região superior (FMSS); frutos verdes sem anomalia na região inferior (FVSI); frutos verdes sem anomalia na região superior (FVSS); frutos verdes com anomalia na região inferior (FVCI); frutos verdes com anomalia na região superior (FVCS). Dentre as substâncias analisadas, os carotenoides, os taninos e os fenóis totais mostram indicativos para a caracterização do anelamento. Tanto substâncias fenólicas quanto carotenoides apresentam propriedades antioxidantes e, dessa forma, poderiam estar relacionadas à defesa antioxidante causada por um fator de estresse ainda desconhecido, que promove o anelamento característico apresentado pelas goiabas.
Resumo:
At the cashew nut processing industry it is often the generation of wastewaters containing high content of toxic organic compounds. The presence of these compounds is due mainly to the so called liquid of the cashew nut (CNSL). CNSL, as it is commercially known in Brazil, is the liquid of the cashew nut. It looks like an oil with dark brown color, viscous and presents a high toxicity index due to the chemical composition, i.e. phenol compounds, such as anacardic acid, cardol, 2-methyl cardol and monophenol (cardanol). These compounds are bio resistant to the conventional treatments. Furthermore, the corresponding wastewaters present high content of TOC (total organic carbon). Therefore due to the high degree of toxicity it is very important to study and develop treatments of these wastewaters before discharge to the environmental. This research aims to decompose these compounds using advanced oxidative processes (AOP) based on the photo-Fenton system. The advantage of this system is the fast and non-selective oxidation promoted by the hydroxyl radicals (●OH), that is under determined conditions can totally convert the organic pollutants to CO2 and H2O. In order to evaluate the decomposition of the organic charge system samples of the real wastewater od a processing cashew nut industry were taken. This industry was located at the country of the state of Rio Grande do Norte. The experiments were carried out with a photochemical annular reactor equipped with UV (ultra violet) lamp. Based on preliminary experiments, a Doehlert experimental design was defined to optimize the concentrations of H2O2 and Fe(II) with a total of 13 runs. The experimental conditions were set to pH equal to 3 and temperature of 30°C. The power of the lamps applied was 80W, 125W and 250W. To evaluate the decomposition rate measures of the TOC were accomplished during 4 hours of experiment. According to the results, the organic removal obtained in terms of TOC was 80% minimum and 95% maximum. Furthermore, it was gotten a minimum time of 49 minutes for the removal of 30% of the initial TOC. Based on the obtained experimental results, the photo-Fenton system presents a very satisfactory performance as a complementary treatment of the wastewater studied
Resumo:
Environmental sustainability has become one of the topics of greatest interest in industry, mainly due to effluent generation. Phenols are found in many industries effluents, these industries might be refineries, coal processing, pharmaceutical, plastics, paints and paper and pulp industries. Because phenolic compounds are toxic to humans and aquatic organisms, Federal Resolution CONAMA No. 430 of 13.05.2011 limits the maximum content of phenols, in 0.5 mg.L-1, for release in freshwater bodies. In the effluents treatment, the liquid-liquid extraction process is the most economical for the phenol recovery, because consumes little energy, but in most cases implements an organic solvent, and the use of it can cause some environmental problems due to the high toxicity of this compound. Because of this, exists a need for new methodologies, which aims to replace these solvents for biodegradable ones. Some literature studies demonstrate the feasibility of phenolic compounds removing from aqueous effluents, by biodegradable solvents. In this extraction kind called "Cloud Point Extraction" is used a nonionic surfactant as extracting agent of phenolic compounds. In order to optimize the phenol extraction process, this paper studies the mathematical modeling and optimization of extraction parameters and investigates the effect of the independent variables in the process. A 32 full factorial design has been done with operating temperature and surfactant concentration as independent variables and, parameters extraction: Volumetric fraction of coacervate phase, surfactant and residual concentration of phenol in dilute phase after separation phase and phenol extraction efficiency, as dependent variables. To achieve the objectives presented before, the work was carried out in five steps: (i) selection of some literature data, (ii) use of Box-Behnken model to find out mathematical models that describes the process of phenol extraction, (iii) Data analysis were performed using STATISTICA 7.0 and the analysis of variance was used to assess the model significance and prediction (iv) models optimization using the response surface method (v) Mathematical models validation using additional measures, from samples different from the ones used to construct the model. The results showed that the mathematical models found are able to calculate the effect of the surfactant concentration and the operating temperature in each extraction parameter studied, respecting the boundaries used. The models optimization allowed the achievement of consistent and applicable results in a simple and quick way leading to high efficiency in process operation.
Resumo:
Textile industry deals with a high diversity of processes and generation of wastewaters with a high content of pollutant material. Before being disposed of in water bodies, a pre-treatment of the effluent is carried out, which is sometimes ineffective. In order to be properly treated, physical and chemical properties of the effluent must be known, as well as the pollutant agents that might be present in it. This has turned out to be a great problem in the textile industry, for there is a variety of processes and the pollutant load is very diversified. The characterization of the effluent allows the identification of most critical points and, as a consequence, the most appropriate treatment procedure to be employed, may be chosen. This study presents the results obtained after characterizing the effluent of a textile industry that comprises knitting, dyeing and apparel sections, processing mainly polyester/cotton articles. In this work, twenty samples of the effluent were collected, and related to the changes in production. From the results, a statistical evaluation was applied, determined in function of the rate of flow. The following properties and pollutants agents were quantitatively analysed: temperature; pH; sulfides; chlorine; alcalinity; chlorides; cianides; phenols; color; COD (Chemical Oxygen Demand); TOC (Total Organic Carbon); oil and grease; total, fixed and volatile solids; dissolved, fixed and volatile solids; suspended, fixed and volatile solids; setteable solids and heavy metals such as cadmium, copper, lead, chromium, tin, iron, zinc and nickel. Analyses were carried out according to ABNT NBR 13402 norm, based upon Standard Methods for the Examination of Water and Wastewater. As a consequence, a global treatment proposal is presented, involving clean production practices as contaminant load reducer, followed by conventional (biological) treatment
Resumo:
Petroleum Refinery wastewaters (PRW) have hart-to-degrade compounds, such as: phenols, ammonia, cyanides, sulfides, oils and greases and the mono and polynuclear aromatic hydrocarbons: benzene, toluene and xylene (BTX), acenaphthene, nitrobenzene and naphtalene. It is known that the microrganisms activity can be reduced in the presence of certain substances, adversely affecting the biological process of wastewater treatment. This research was instigated due the small number of studies regarding to this specific topic in the avaiable literature. This body of work ims to evaluate the effect of toxic substances on the biodegradability of the organic material found in PRW. Glucose was chosen as the model substrate due to its biodegradable nature. This study was divided into three parts: i) a survey of recalcitants compounds and the removal of phenol by using both biological and photochemical-biological processes; ii) biomass aclimation and iii) evaluation of the inhibitory effect certain compounds have on glucose biodegradation. The phenol degradation experiments were carried out in an activity sludge system and in a photochemical reactor. The results showed the photochemical-biological process to be more effective on phenol degradation, suggesting the superioruty of a combined photochemical-biological treatment when compared with a simple biological process for phenol removal from industry wastewaters. For the acclimation step, was used an activated sludge from industrial wastewaters. A rapid biomass aclimation to a synthetic solution composed of the main inhibitory compouns fpund in a PRW was obtained using the following operation condition: (pH = 7,0; DO ≥ 2,0 mg/L; RS = 20 days e qH = 31,2 and 20,4 hours), The last part was consisted of using respirometry evaluation toxicity effects of selected compounds over oxygen uptake rate to adaptated and non adaptated biomass in the presence of inhibitory compounds. The adaptated sludge showed greater degration capacity, with lower sensibility to toxic effects. The respirometry has proved to be very practical, as the techiniques used were simple and rapid, such as: Chemical Oxygen Demand (COD), Dissolved Oxygen (DO), and Volatile Suspended Solids (VSS). Using the latter it is possible to perform sludge selection to beggingthe process; thus allowing its use for aerobic treatment system`s behacior prediction
Resumo:
Increasing concern with the environment, in addition to strict laws, has induced the industries to find altenatives to the treatment of their wastes. Actually, the oil industry has sought solutions to overcome a big environmental problem, i.e., oil field produced water being discharged to the sea. These effluents have organic compounds dissolved, such as polycyclic aromatic hydrocarbons, phenols, benzene, toluene, ethylbenzene and xylenes (BTEX). These compounds are difficult to be removed and have high toxicity. The advanced oxidation processes - AOP are effective to degradation of these organic compounds, because they generate hydroxyl radicals with high potential of oxidation. This work includes the reactor photochemical development applied in the photodegradation treatment (by photo-Fenton process) of wastewaters containing organic compounds dissolved, aiming at treatment and recovery the oil field produced water. The studied reactor allowed the evaluation of two ultraviolet radiation sources that is the main factor to describe the feasibility of the photo¬Fenton treatment, i.e., sun and black light fluorescent lamps, and other relevant variables the process: concentration of reagents, irradiated area and also various reactor configurations to maximize the use of radiation. The organic matter degradation was verified with samples collected during the experimental and analyzed with a total organic carbon analyzer (TOC), which expressed the results in terms of mgC/L. The solar radiation was more effective than radiation from the lamps. it's an important factor for the operation costs cutting. Preliminary experiments applied to oil field produced water treatment have showed satisfactory results, reducing up to 76 % of organic matter
Resumo:
Increasing concern with the environment, in addition to strict laws, has induced the industries to find alternatives to the treatment of their wastes. Actually, the oil industry has sought solutions to overcome a big environmental problem, i.e., oil field produced water being discharged to the sea. These effluents have organic compounds dissolved, such as polycyclic aromatic hydrocarbons, phenols, benzene, toluene, ethylbenzene and xylenes (BTEX). These compounds are difficult to be removed and have high toxicity. The advanced oxidation processes - AOP are effective to degradation of these organic compounds, because they generate hydroxyl radicals with high potential of oxidation. This work includes the reactor photochemical development applied in the photodegradation treatment (by photo-Fenton process) of wastewaters containing organic compounds dissolved, aiming at treatment and recovery the oil field produced water. The studied reactor allowed the evaluation of two ultraviolet radiation sources that is the main factor to describe the feasibility of the photo- Fenton treatment, i.e., sun and black light fluorescent lamps, and other relevant variables the process: concentration of reagents, irradiated area and also various reactor configurations to maximize the use of radiation. The organic matter degradation was verified with samples collected during the experimental and analyzed with a total organic carbon analyzer (TOC), which expressed the results in terms of mgC/L. The solar radiation was more effective than radiation from the lamps. It's an important factor for the operation costs cutting. Preliminary experiments applied to oil field produced water treatment have showed satisfactory results, reducing up to 76 % of organic matter
Resumo:
In Cerrado, Zanthoxylum rhoifolium Lam. stands out because it interferes with the growth and development of other plants. The preliminary phytochemical analyses showed the presence of polyphenols and flavonoids. The Z. rhoifolium extract inhibited the germination index (5 mg mL(-1)=0.5%; 10mg mL(-1)=37.(5%) and 20mg mL(-1)=85.5%) decreased the germination and the lettuce seedlings growth (roots and the hypocotyls) and reduced the mitotic index than control. The extract of 1000 mu g mL(-1)conc contained (165.20 mg and 45.74 mg, phenols and total flavonoids, respectively) and had higher antioxidant activity (80.52%). We concluded that Z. rhofolium possesses allelopathic potential.
Resumo:
A chemical and bioactive quality evaluation of phytochemicals content of 10 eggplant lines and three allied species (S. sodomaeum, S. aethiopicum and S. integrifolium) was performed. The eggplant lines were divided into the two subgroups of delphinidin-3-rutinoside (D3R) and nasunin (NAS) typologies, on the basis of the anthocyanin detected in their fruit skin. The allied species had higher glycoalkaloids content, lower soluble solids and PPO activity and absence of anthocyanins compared to the eggplant lines; S. sodomaeum stood out for high phenols content. Orthogonal contrast revealed a higher sugar content and low PPO activity in NAS- compared to D3R-typologies, whereas higher chlorogenic acid and anthocyanin contents were present in D3R-typologies. The main effect of the ripening was a decrease in phenols and in the PPO activity, not evidenced in S. sodomaeum, and an increase of glycoalkaloids in overripe fruits.A good relationship was found between superoxide anion scavenging capacity and chlorogenic acid. This study highlighted the pattern of accumulation, also evidencing variations, of several phytochemicals during the eggplant fruit development and ripening.
Resumo:
This work is directed to the treatment of organic compounds present in produced water from oil using electrochemical technology. The water produced is a residue of the petroleum industry are difficult to treat , since this corresponds to 98 % effluent from the effluent generated in the exploration of oil and contains various compounds such as volatile hydrocarbons (benzene, toluene, ethylbenzene and xylene), polycyclic aromatic hydrocarbons (PAHs), phenols, carboxylic acids and inorganic compounds. There are several types of treatment methodologies that residue being studied, among which are the biological processes, advanced oxidation processes (AOPs), such as electrochemical treatments electrooxidation, electrocoagulation, electrocoagulation and eletroredution. The electrochemical method is a method of little environmental impact because instead of chemical reagents uses electron through reactions of oxide-reducing transforms toxic substances into substances with less environmental impact. Thus, this paper aims to study the electrochemical behavior and elimination of the BTX (benzene, toluene and xylene) using electrode of Ti/Pt. For the experiment an electrochemical batch system consists of a continuous source, anode Ti/Pt was used, applying three densities of current (1 mA/cm2, 2,5 mA/cm2 and 5 mA/cm2). The synthetic wastewater was prepared by a solution of benzene, toluene and xylene with a concentration of 5 ppm, to evaluate the electrochemical behavior by cyclic voltammetry and polarization curves, even before assessing the removal of these compounds in solution by electrochemical oxidation. The behavior of each of the compounds was evaluated by the use of electrochemical techniques indicate that each of the compounds when evaluated by cyclic voltammetry showed partial oxidation behavior via adsorption to the surface of the Ti/Pt electrode. The adsorption of each of the present compounds depends on the solution concentration but there is the strong adsorption of xylene. However, the removal was confirmed by UV-Vis, and analysis of total organic carbon (TOC), which showed a percentage of partial oxidation (19,8 % - 99,1 % TOC removed), confirming the electrochemical behavior already observed in voltammetry and cyclic polarization curves
Resumo:
The production of oil and gas is usually accompanied by the production of water, also known as produced water. Studies were conducted in platforms that discharge produced water in the Atlantic Ocean due to oil and gas production by Petrobras from 1996 to 2006 in the following basins: Santos (Brazilian south region), Campos (Brazilian southeast region) and Ceara (Brazilian northeast region). This study encompasses chemical composition, toxicological effects, discharge volumes, and produced water behavior after releasing in the ocean, including dispersion plumes modeling and monitoring data of the marine environment. The concentration medians for a sampling of 50 samples were: ammonia (70 mg L-1), boron (1.3 mg L1), iron (7.4 mg L-1), BTEX (4.6 mg L-1), PAH (0.53 mg L-1), TPH (28 mg L-1); phenols (1.3 mg L-1) and radioisotopes (0.15 Bq L-1 for 226Ra and 0.09 Bq L-1 for 228Ra). The concentrations of the organic and inorganic parameters observed for the Brazilian platforms were similar to the international reference data for the produced water in the North Sea and in other regions of the world. It was found significant differences in concentrations of the following parameters: BTEX (p<0.0001), phenols (p=0.0212), boron (p<0.0001), iron (p<0.0001) and toxicological response in sea urchin Lytechinus variegatus (p<0.0001) when considering two distinguished groups, platforms from southeast and northeast Region (PCR-1). Significant differences were not observed among the other parameters. In platforms with large gas production, the monoaromatic concentrations (BTEX from 15.8 to 21.6 mg L-1) and phenols (from 2 to 83 mg L-1) were higher than in oil plataforms (median concentrations of BTEX were 4.6 mg L-1 for n=53, and of phenols were 1.3 mg L-1 for n=46). It was also conducted a study about the influence of dispersion plumes of produced water in the vicinity of six platforms of oil and gas production (P-26, PPG-1, PCR-1, P-32, SS-06), and in a hypothetical critical scenario using the chemical characteristics of each effluent. Through this study, using CORMIX and CHEMMAP models for dispersion plumes simulation of the produced water discharges, it was possible to obtain the dilution dimension in the ocean after those discharges. The dispersion plumes of the produced water modelling in field vicinity showed dilutions of 700 to 900 times for the first 30-40 meters from the platform PCR-1 discharge point; 100 times for the platform P-32, with 30 meters of distance; 150 times for the platform P-26, with 40 meters of distance; 100 times for the platform PPG-1, with 130 meters of distance; 280 to 350 times for the platform SS-06, with 130 meters of distance, 100 times for the hypothetical critical scenario, with the 130 meters of distance. The dilutions continue in the far field, and with the results of the simulations, it was possible to verify that all the parameters presented concentrations bellow the maximum values established by Brazilian legislation for seawater (CONAMA 357/05 - Class 1), before the 500 meters distance of the discharge point. These results were in agreement with the field measurements. Although, in general results for the Brazilian produced water presented toxicological effects for marine organisms, it was verified that dilutions of 100 times were sufficient for not causing toxicological responses. Field monitoring data of the seawater around the Pargo, Pampo and PCR-1 platforms did not demonstrate toxicity in the seawater close to these platforms. The results of environmental monitoring in seawater and sediments proved that alterations were not detected for environmental quality in areas under direct influence of the oil production activities in the Campos and Ceara Basin, as according to results obtained in the dispersion plume modelling for the produced water discharge