950 resultados para Phase-transitions
Resumo:
Among complex oxides containing rare earth and manganese BaLn(2)Mn(2)O(7)( Ln = rare earth) with the layered perovskite type and Ln(2)(Mn, M)O-7 with pyrochlore-related structure were studied since these compounds show many kinds of phases and unique phase transitions. In BaLn(2)Mn(2)O(7) there appear many phases, depending on the synthetic conditions for each rare earth. The tetragonal phase of so-called Ruddlesden-Popper type is the fundamental structure and many kinds of deformed modification of this structure are obtained. For BaEu2Mn2O7 at least five phases have been identified from the results of X-ray diffraction analysis with the space group P4(2)/mnm, Fmmm, Immm and A2/m in addition to the fundamental tetragonal I4/mmm phase. In the pyrochlore-related type compounds, Ln(2)Mn(2-x)M(x)O(7)(M = Ta, Nb, W etc), there also appear several phases With different crystal structures. With regard to every rare earth, Ln(2)MnTaO(7) phase is stable only for excess Ta and can be obtained under high oxygen partial pressure process. This group has trigonal structure with zirkelite type ( P3(1)21 space group).
Resumo:
The phase transition behavior of a thermotropic liquid crystalline poly(aryl ether ketone) synthesized by nucleophilic substitution reactions of 4,4'-biphenol (BP), and chlorohydroquinone (CH) with 1,4-bis(4-fluorobenzoyl)benzene (BF) has been investigated by differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WAXD). The copolymer exhibits multiple first order phase transitions, which are associated with crystal-to-smectic liquid crystal transition and smectic liquid crystal-to-isotropic transition. When the cooling rate is low (<10
Resumo:
The phase transition and transition kinetics of a liquid crystalline copoly(amide-imide) (PAI37), which was synthesized from 70 mol% pyromellitic dianhydride, 30 mol% terephthaloyl chloride, and 1,3-bis[4-(4'-aminophenoxy)cumyl]benzene, was characterized by differential scanning calorimetry, polarized light microscopy, X-ray diffraction, and rheology. PAI37 exhibits a glass transition temperature at 182 degreesC followed by multiple phase transitions. The crystalline phase starts to melt at similar to 220 degreesC and forms smectic C (S-C) phase. The Sc phase transforms into smectic A (S-A) phase when the temperature is above 237 degreesC. The S-C to S-A transition spans a broad temperature range in which the S-A phase vanishes and forms isotropic melt. The WARD fiber pattern of PAI37 pulled from the anisotropic melt revealed an anomalous chain orientation, which was characterized by its layer normal perpendicular to the fiber direction. The transition kinetics for the mesophase and crystalline phase formation was also studied.
Resumo:
A series of liquid crystalline copolyethers have been synthesized from 1-(4-hydroxy-4'-biphenyl)-2-(4-hydroxyphenyl)propane with 1,7-dibromoheptane and 1,12-dibromododecene [coTPPs(7/12)], which represents copolyethers containing both odd and even numbers of methylene units. The molar ratio of odd to even methylene units in this series ranges from 1/9 to 9/1. The coTPPs(7/12) exhibit multiple phase transitions during cooling and heating in differential scanning calorimetry experiments. For all these thermal transitions, a small undercooling and superheating dependence is observed upon cooling and heating at different rates. Three types of phase behaviors can be classified in coTPPs(7/12) on the basis of the structural analyses by wide-angle X-ray diffraction on powder and fiber samples and by electron diffraction experiments in transmission electron microscopy. At room temperature, highly ordered smectic and smectic crystal (SC) phases are identified in coTPPs(7/12: 1/9 and 2/8), which is similar to the homopolymer TPP(m = 12). The coTPPs(7/12: 3/7, 4/6, and 5/5) possess a hexagonal columnar (Phi(H)) phase in which the molecular and columnar axes are parallel to the fiber direction and perpendicular to the hexagonal lateral packing. The coTPPs(7/12: 6/4, 7/3, and 8/2) possess a tilted hexagonal columnar (Phi(TH)) phase with a single tilt angle which increases with the increasing composition of the seven-numbered methylene units. However, in coTPP(7/12: 9/1), a Phi(TH) phase with multiple tilt angles is found. Upon heating, phase structures in most coTPPs(7/12) involving the columnar phases enter directly into the nematic (N) phase, while the coTPP(7/12: 1/9) exhibits a highly ordered smectic F (S-F) phase before it reaches the N phase. One exception is found in coTPP(7/12: 2/8), wherein the transformation from the S-F to Phi(H) occurs prior to the N phase. Combining the copolymer phase behaviors observed with the corresponding homopolymers TPP(n = 7) and TPP(m = 12), a phase diagram describing transition temperatures with respect to the composition can be constructed.
Resumo:
A series of liquid crystalline copolyethers has been synthesized from 1-(4-hydroxy-4'-biphenyl)-2-(4-hydroxyphenyl)propane and different alpha,omega-dibromoalkanes [coTPP(n/m)]. In this report, coTPPs having n = 5, 7, 9, 11 and m = 12 are studied, which represent copolyethers having both varying odd number and a fixed even number of methylene units. The compositions were fixed at an equal molar ratio (50/50). These coTPPs(nlm) show multiple phase transitions during cooling and heating in differential scanning calorimetry experiments. The undercooling dependence of these transitions is found to be small, indicating that these transitions are close to equilibrium, Although the coTPPs possess a high-temperature nematic (N) phase, the periodicity order along the chain direction is increasingly disturbed when the length of the odd-numbered methylene units decreases from n 11 to 5. in the coTPPs(5/12, 7/12, and 9/12), wide-angle X-ray diffraction experiments at different temperatures show that, shortly after the N phase formation during cooling, the lateral molecular packing improves toward a hexagonal lattice, as evidenced by a gradual narrowing of the scattering halo. This process represents the possible existence of an exotic N phase, which serves as a precursor to the columnar (Phi(H)) phase. A further decrease in temperature leads to a (PH phase having a long-range ordered, two-dimensional hexagonal lattice. In coTPP(11/12), the phase structures are categorized as highly ordered and tilted, smectic and smectic crystal phases, similar to homoTPPs, such as the smectic F (S-F) and smectic crystal G (SCG) phases. An interesting observation is found for coTPP(9/12), wherein a structural change from the high-temperature Phi(H) phase to the low-temperature S-F phase occurs. It can be proven that, upon heating, the well-defined layer structure disappears and the lateral packing remains hexagonal. The overall structural differences in this series of coTPPs between those of the columnar and highly ordered smectic phases are related to the disorders introduced into the layer structure by the dissimilarity of the methylene unit lengths in the comonomers.
Resumo:
Two new chiral liquid crystals of schiff-base type have been synthesized. This series of compounds contain a-chloro acidic ester chain prepared from commercially available L-valine. Both of the compounds exhibit tilted smectic phases; their phase transitions were studied using DSC and polarized optical microscopy; the influence of intramolecular hydrogen bonds on the phase behavior was studied as well.
Resumo:
The solid-solid phase transition of [n-C11H23NH3]2ZnCl4 Complex have been studied by Raman spectroscopy. The results show that the occurence of the structural phase transitions mainly related to the change of packing structure and molecular conformation o
Resumo:
The solid-solid phase transitions in the perovskite-type layer compound [n- C16H33NH3]2CoCl4 have been studied by infrared spectroscopy. A new phase transition at 340 K was found by comparison with differential scanning calorimetry results. A temperature dependence study of the infrared spectra provides evidence of the occurrence of structural phase transitions related to the dynamics of the alkylammonium ions and hydrogen bonds. The main transition at 374 K corresponds to the conformational order-disorder change in the chain, which probably couples with reorientational motions of the NH3 polar heads. GTG or GTG' defects appear in the high temperature disordered phase.
Resumo:
The heat capacities of crystalline and liquid n-hexatriacontane were measured with an automatic adiabatic calorimeter over the temperature range of 80-370 K. Two solid-to-solid phase transitions at the temperatures of 345.397 and 346.836 K, and a fusion at the temperature of 348.959 K have been observed. The enthalpies and entropies of these phase transitions as well as the chemical purity of the substance were determined on the basis of the heat capacity measurements. Thermal decomposition temperatures of the compound were measured by thermogravimetric analysis. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The functional properties of two types of barium strontium titanate (BST) thin film capacitor structures were studied: one set of structures was made using pulsed-laser deposition (PLD) and the other using chemical solution deposition. While initial observations on PLD films looking at the behavior of T-m (the temperature at which the maximum dielectric constant was observed) and T-c(*) (from Curie-Weiss analysis) suggested that the paraelectric-ferroelectric phase transition was progressively depressed in temperature as BST film thickness was reduced, further work suggested that this was not the case. Rather, it appears that the temperatures at which phase transitions occur in the thin films are independent of film thickness. Further, the fact that in many cases three transitions are observable, suggests that the sequence of symmetry transitions that occur in the thin films are the same as in bulk single crystals. This new observation could have implications for the validity of the theoretically produced thin film phase diagrams derived by Pertsev [Phys. Rev. Lett. 80, 1988 (1998)] and extended by Ban and Alpay [J. Appl. Phys. 91, 9288 (2002)]. In addition, the fact that T-m measured for virgin films does not correlate well with the inherent phase transition behavior, suggests that the use of T-m alone to infer information about the thermodynamics of thin film capacitor behavior, may not be sufficient. (C) 2004 American Institute of Physics.
Resumo:
We describe extensive studies on a family of perovskite oxides that are ferroelectric and ferromagnetic at ambient temperatures. The data include x-ray diffraction, Raman spectroscopy, measurements of ferroelectric and magnetic hysteresis, dielectric constants, Curie temperatures, electron microscopy
(both scanning electron microscope and transmission electron microscopy (TEM)) studies, and both longitudinal and transverse magnetoelectric constants a33 and a31. The study extends earlier work to lower Fe, Ta, and Nb concentrations at the B-site (from 15%–20% down to 5%). The magnetoelectric
constants increase supralinearly with Fe concentrations, supporting the earlier conclusions of a key role for Fe spin clustering. The room-temperature orthorhombic C2v point group symmetry inferred from earlier x-ray diffraction studies is confirmed via TEM, and the primitive unit cell size is found to be the basic perovskite Z¼1 structure of BaTiO3, also the sequence of phase transitions with increasing temperature from rhombohedral to orthorhombic to tetragonal to cubic mimics barium titanate.
Resumo:
High-performance piezoelectrics are lead-based solid solutions that exhibit a so-called morphotropic phase boundary, which separates two competing phases as a function of chemical composition; as a consequence, an intermediate low-symmetry phase with a strong piezoelectric effect arises. In search for environmentally sustainable lead-free alternatives that exhibit analogous characteristics, we use a network of competing domains to create similar conditions across thermal inter-ferroelectric transitions in simple, lead-free ferroelectrics such as BaTiO 3 and KNbO 3. Here we report the experimental observation of thermotropic phase boundaries in these classic ferroelectrics, through direct imaging of low-symmetry intermediate phases that exhibit large enhancements in the existing nonlinear optical and piezoelectric property coefficients. Furthermore, the symmetry lowering in these phases allows for new property coefficients that exceed all the existing coefficients in both parent phases. Discovering the thermotropic nature of thermal phase transitions in simple ferroelectrics thus presents unique opportunities for the design of 'green' high-performance materials.
Resumo:
We provide insight into the quantum correlations structure present in strongly correlated systems beyond the standard framework of bipartite entanglement. To this aim we first exploit rotationally invariant states as a test bed to detect genuine tripartite entanglement beyond the nearest neighbor in spin-1/2 models. Then we construct in a closed analytical form a family of entanglement witnesses which provides a sufficient condition to determine if a state of a many-body system formed by an arbitrary number of spin-1/2 particles possesses genuine tripartite entanglement, independently of the details of the model. We illustrate our method by analyzing in detail the anisotropic XXZ spin chain close to its phase transitions, where we demonstrate the presence of long-range multipartite entanglement near the critical point and the breaking of the symmetries associated with the quantum phase transition.
Resumo:
Electroless Ni–P (EN) and composite Ni–P–SiC (ENC) coatings were developed on cast aluminium alloy substrate, LM24. The coating phase composition, microstructure and microhardness were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and microhardness tester, respectively, on as-plated and heat-treated specimens. The original microstructure of the Ni–P matrix is not affected by the inclusion of the hard particles SiC. No formation of Ni–Si phase was observed up to 500 °C of heat treatment. The microhardness is increased on incorporation of SiC in Ni–P matrix. The hardening mechanism is the formation of intermetallic phase Ni3P on annealing at elevated temperature.
Resumo:
We present an experimental study of the premartensitic and martensitic phase transitions in a Ni2MnGa single crystal by using ultrasonic techniques. The effect of applied magnetic field and uniaxial compressive stress has been investigated. It has been found that they substantially modify the elastic and magnetic behavior of the alloy. These experimental findings are a consequence of magnetoelastic effects. The measured magnetic and vibrational behavior agrees with the predictions of a recently proposed Landau-type model [A. Planes et al., Phys. Rev. Lett. 79, 3926 (1997)] that incorporates a magnetoelastic coupling as a key ingredient.