985 resultados para Phase factor
Resumo:
The effects of oral ingestion of oleic (OLA) and linoleic (LNA) acids on wound healing in rats were investigated. LNA increased the influx of inflammatory cells, the concentration of hydrogen peroxide (H(2)O(2)) and cytokine-induced neutrophil chemoattractant-2 alpha beta (CINC-2 alpha beta), and the activation of the transcription factor activator protein-1 (AP-1) in the wound at 1 hour post wounding. LNA decreased the number of inflammatory cells and IL-1, IL-6, and macrophage inflammatory protein-3 (MIP-3) concentrations, as well as NF-kappa B activation in the wound at 24 hours post wounding. LNA accelerated wound closure over a period of 7 days. OLA increased TNF-alpha concentration and NF-kappa B activation at 1 hour post wounding. A reduction of IL-1, IL-6, and MIP-3 alpha concentrations, as well as NF-kappa B activation, was observed 24 hours post wounding in the OLA group. These data suggest that OLA and LNA accelerate the inflammatory phase of wound healing, but that they achieve this through different mechanisms.
Resumo:
Objective: To assess the risk factors for delayed diagnosis of uterine cervical lesions. Materials and Methods: This is a case-control study that recruited 178 women at 2 Brazilian hospitals. The cases (n = 74) were composed of women with a late diagnosis of a lesion in the uterine cervix (invasive carcinoma in any stage). The controls (n = 104) were composed of women with cervical lesions diagnosed early on (low-or high-grade intraepithelial lesions). The analysis was performed by means of logistic regression model using a hierarchical model. The socioeconomic and demographic variables were included at level I (distal). Level II (intermediate) included the personal and family antecedents and knowledge about the Papanicolaou test and human papillomavirus. Level III (proximal) encompassed the variables relating to individuals' care for their own health, gynecologic symptoms, and variables relating to access to the health care system. Results: The risk factors for late diagnosis of uterine cervical lesions were age older than 40 years (odds ratio [OR] = 10.4; 95% confidence interval [CI], 2.3-48.4), not knowing the difference between the Papanicolaou test and gynecological pelvic examinations (OR, = 2.5; 95% CI, 1.3-4.9), not thinking that the Papanicolaou test was important (odds ratio [OR], 4.2; 95% CI, 1.3-13.4), and abnormal vaginal bleeding (OR, 15.0; 95% CI, 6.5-35.0). Previous treatment for sexually transmissible disease was a protective factor (OR, 0.3; 95% CI, 0.1-0.8) for delayed diagnosis. Conclusions: Deficiencies in cervical cancer prevention programs in developing countries are not simply a matter of better provision and coverage of Papanicolaou tests. The misconception about the Papanicolaou test is a serious educational problem, as demonstrated by the present study.
Resumo:
Abstract Background Clinical and experimental data suggest that the inflammatory response is impaired in diabetics and can be modulated by insulin. The present study was undertaken to investigate the role of insulin on the early phase of allergic airway inflammation. Methods Diabetic male Wistar rats (alloxan, 42 mg/Kg, i.v., 10 days) and controls were sensitized by s.c. injection of ovalbumin (OA) in aluminium hydroxide 14 days before OA (1 mg/0.4 mL) or saline intratracheal challenge. The following analyses were performed 6 hours thereafter: a) quantification of interleukin (IL)-1β, tumor necrosis factor (TNF)-α and cytokine-induced neutrophil chemoattractant (CINC)-1 in the bronchoalveolar lavage fluid (BALF) by Enzyme-Linked Immunosorbent Assay, b) expression of E- and P- selectins on lung vessels by immunohistochemistry, and c) inflammatory cell infiltration into the airways and lung parenchyma. NPH insulin (4 IU, s.c.) was given i.v. 2 hours before antigen challenge. Results Diabetic rats exhibited significant reduction in the BALF concentrations of IL-1β (30%) and TNF-α (45%), and in the lung expression of P-selectin (30%) compared to non-diabetic animals. This was accompanied by reduced number of neutrophils into the airways and around bronchi and blood vessels. There were no differences in the CINC-1 levels in BALF, and E-selectin expression. Treatment of diabetic rats with NPH insulin, 2 hours before antigen challenge, restored the reduced levels of IL-1β, TNF-α and P-selectin, and neutrophil migration. Conclusion Data presented suggest that insulin modulates the production/release of TNF-α and IL-1β, the expression of P- and E-selectin, and the associated neutrophil migration into the lungs during the early phase of the allergic inflammatory reaction.
Resumo:
BACKGROUND: Generation of active procoagulant cofactor factor Va (FVa) and its subsequent association with the enzyme activated factor X (FXa) to form the prothrombinase complex is a pivotal initial event in blood coagulation and has been the subject of investigative effort, speculation, and controversy. The current paradigm assumes that FV activation is initiated by limited proteolysis by traces of (meizo) thrombin. METHODS AND RESULTS: Recombinant tick salivary protein TIX-5 was produced and anticoagulant properties were studied with the use of plasma, whole blood, and purified systems. Here, we report that TIX-5 specifically inhibits FXa-mediated FV activation involving the B domain of FV and show that FXa activation of FV is pivotal for plasma and blood clotting. Accordingly, tick feeding is impaired on TIX-5 immune rabbits, displaying the in vivo importance of TIX-5. CONCLUSIONS: Our data elucidate a unique molecular mechanism by which ticks inhibit the host's coagulation system. From our data, we propose a revised blood coagulation scheme in which direct FXa-mediated FV activation occurs in the initiation phase during which thrombin-mediated FV activation is restrained by fibrinogen and inhibitors.
Resumo:
Methods We conducted a phase I, multicenter, randomized, double-blind, placebo-controlled, multi-arm (10) parallel study involving healthy adults to evaluate the safety and immunogenicity of influenza A (H1N1) 2009 non-adjuvanted and adjuvanted candidate vaccines. Subjects received two intramuscular injections of one of the candidate vaccines administered 21 days apart. Antibody responses were measured by means of hemagglutination-inhibition assay before and 21 days after each vaccination. The three co-primary immunogenicity end points were the proportion of seroprotection >70%, seroconversion >40%, and the factor increase in the geometric mean titer >2.5. Results A total of 266 participants were enrolled into the study. No deaths or serious adverse events were reported. The most commonly solicited local and systemic adverse events were injection-site pain and headache, respectively. Only three subjects (1.1%) reported severe injection-site pain. Four 2009 influenza A (H1N1) inactivated monovalent candidate vaccines that met the three requirements to evaluate influenza protection, after a single dose, were identified: 15 μg of hemagglutinin antigen without adjuvant; 7.5 μg of hemagglutinin antigen with aluminum hydroxide, MPL and squalene; 3.75 μg of hemagglutinin antigen with aluminum hydroxide and MPL; and 3.75 μg of hemagglutinin antigen with aluminum hydroxide and squalene. Conclusions Adjuvant systems can be safely used in influenza vaccines, including the adjuvant monophosphoryl lipid A (MPL) derived from Bordetella pertussis with squalene and aluminum hydroxide, MPL with aluminum hydroxide, and squalene and aluminum hydroxide.
Resumo:
UV-B-Strahlung, die durch die fortschreitende Zerstörung der Ozonschicht zunimmt, ist hauptsächlich für das Entstehen von Basaliomen und Plattenepithelkarzinomen verantwort-lich, an denen jedes Jahr etwa 2-3 Millionen Menschen weltweit erkranken. UV-B indu-zierte Hautkarzinogenese ist ein komplexer Prozess, bei dem vor allem die mutagenen und immunsuppressiven Wirkungen der UV-B-Strahlung von Bedeutung sind. Die Rolle von GM-CSF in der Hautkarzinogenese ist dabei widersprüchlich. Aus diesem Grund wurde die Funktion von GM-CSF in vivo in der UV-B induzierten Hautkarzinogenese mittels zwei bereits etablierter Mauslinien untersucht: Erstens transgene Mäuse, die einen GM-CSF Antagonisten unter der Kontrolle des Keratin-10-Promotors in den suprabasalen Schichten der Epidermis exprimieren und zweitens solche, die unter dem Keratin-5-Promotor murines GM-CSF in der Basalschicht der Epidermis überexprimieren. Eine Gruppe von Tieren wurde chronisch, die andere akut bestrahlt. Die konstitutionelle Verfassung der Tiere mit erhöhter GM-CSF-Aktivität in der Haut war nach chronischer UV-B-Bestrahlung insgesamt sehr schlecht. Sie wiesen deshalb eine stark erhöhte Mortali-tät auf. Dies ist sowohl auf die hohe Inzidenz als auch dem frühen Auftreten der benignen und malignen Läsionen zurückzuführen. Eine verminderte GM-CSF Aktivität verzögerte dagegen die Karzinomentwicklung und erhöhte die Überlebensrate leicht. GM-CSF wirkt auf verschiedenen Ebenen tumorpromovierend: Erstens erhöht eine gesteigerte Mastzell-anzahl in der Haut der GM-CSF überexprimierenden Tiere per se die Suszeptibilität für Hautkarzinogenese. Zweitens stimuliert GM-CSF die Keratinozytenproliferation. Dadurch kommt es nach UV-B-Bestrahlung zu einer prolongierten epidermalen Hyperproliferation, die zur endogenen Tumorpromotion beiträgt, indem sie die Bildung von Neoplasien unter-stützt. Der Antagonist verzögert dagegen den Proliferationsbeginn, die Keratinozyten blei-ben demzufolge länger in der G1-Phase und der durch UV-B verursachte DNA-Schaden kann effizienter repariert werden. Drittens kann GM-CSF die LCs nicht als APCs aktivie-ren und eine Antitumorimmunität induzieren, da UV-B-Strahlung zur Apoptose von LCs bzw. zu deren Migration in Richtung Lymphknoten führt. Zusätzlich entwickeln GM-CSF überexprimierende Tiere in ihrer Haut nach UV-B-Bestrahlung ein Millieu von antago-nistisch wirkenden Zytokinen, wie TNF-a, TGF-b1 und IL-12p40 und GM-CSF, die proinflammatorische Prozesse und somit die Karzinomentwicklung begünstigen. Der Anta-gonist hemmt nach UV-B-Bestrahlung die Ausschüttung sowohl von immunsuppressiven Zytokinen, wie etwa TNF-a, als auch solchen, die die Th2-Entwicklung unterstützen, wie etwa IL-10 und IL-4. Dies wirkt sich negativ auf die Karzinomentwicklung aus.
Resumo:
Immune modulation by herpesviruses, such as cytomegalovirus, is critical for the establishment of acute and persistent infection confronting a vigorous antiviral immune response of the host. Therefore, the action of immune-modulatory proteins has long been the subject of research, with the final goal to identify new strategies for antiviral therapy.rnIn the case of murine cytomegalovirus (mCMV), the viral m152 protein has been identified to play a major role in targeting components of both the innate and the adaptive immune system in terms of infected host-cell recognition in the effector phase of the antiviral immune response. On the one hand, it inhibits cell surface expression of RAE-1 and thereby prevents ligation of the activating natural killer (NK)-cell receptor NKG2D. On the other hand, it decreases cell surface expression of peptide-loaded MHC class I molecules thereby preventing antigen presentation to CD8 T cells. Ultimately, the outcome of CMV infection is determined by the interplay between viral and cellular factors.rnIn this context, the work presented here has revealed a novel and intriguing connection between viral m152 and cellular interferon (IFN), a key cytokine of the immune system: rnthe m152 promoter region contains an interferon regulatory factor element (IRFE) perfectly matching the consensus sequence of cellular IRFEs.rnThe biological relevance of this regulatory element was first suggested by sequence comparisons revealing its evolutionary conservation among various established laboratory strains of mCMV and more recent low-passage wild-derived virus isolates. Moreover, search of the mCMV genome revealed only three IRFE sites in the complete sequence. Importantly, the functionality of the IRFE in the m152 promoter was confirmed with the use of a mutant virus, representing a functional deletion of the IRFE, and its corresponding revertant virus. In particular, m152 gene expression was found to be inhibited in an IRFE-dependent manner in infected cells. Essentially, this inhibition proved to have a severe impact on the immune-modulatory function of m152, first demonstrated by a restored direct antigen presentation on infected cells for CD8 T-cell activation. Even more importantly, this effect of IRFE-mediated IFN signaling was validated in vivo by showing that the protective antiviral capacity of adoptively-transferred, antigen-specific CD8 T cells is also significantly restored by the IRFE-dependent inhibition of m152. Somewhat curious and surprising, the decrease in m152 protein simultaneously prevented an enhanced activation of NK cells in acute-infected mice, apparently independent of the RAE-1/NKG2D ligand/receptor interaction but rather due to reduced ‘missing-self’ recognition.rnTaken together, this work presents a so far unknown mechanism of IFN signaling to control mCMV immune modulation in acute infection.rnrn
Resumo:
This thesis describes the ultra-precise determination of the g-factor of the electron bound to hydrogenlike 28Si13+. The experiment is based on the simultaneous determination of the cyclotron- and Larmor frequency of a single ion, which is stored in a triple Penning-trap setup. The continuous Stern-Gerlach effect is used to couple the spin of the bound electron to the motional frequencies of the ion via a magnetic bottle, which allows the non-destructive determination of the spin state. To this end, a highly sensitive, cryogenic detection system was developed, which allowed the direct, non-destructive detection of the eigenfrequencies with the required precision.rnThe development of a novel, phase sensitive detection technique finally allowed the determination of the g-factor with a relative accuracy of 40 ppt, which was previously inconceivable. The comparison of the hereby determined value with the value predicted by quantumelectrodynamics (QED) allows the verification of the validity of this fundamental theory under the extreme conditions of the strong binding potential of a highly charged ion. The exact agreement of theory and experiment is an impressive demonstration of the exactness of QED. The experimental possibilities created in this work will allow in the near future not only further tests of theory, but also the determination of the mass of the electron with a precision that exceeds the current literature value by more than an order of magnitude.
Resumo:
The expression of vascular endothelial growth factor (VEGF) is elevated in diabetic macular edema (DME). Ranibizumab binds to and inhibits multiple VEGF variants. We investigated the safety and efficacy of ranibizumab in DME involving the foveal center.
Resumo:
This phase II trial investigated rituximab and cladribine in chronic lymphocytic leukemia. Four induction cycles, comprising cladribine (0.1 mg/kg/day days 1-5, cycles 1-4) and rituximab (375 mg/m(2) day 1, cycles 2-4), were given every 28 days. Stem cell mobilization (rituximab 375 mg/m(2) days 1 and 8; cyclophosphamide 4 g/m(2) day 2; and granulocyte colony-stimulating factor 10 microg/kg/day, from day 4) was performed in responders. Of 42 patients, nine achieved complete remission (CR), 15 very good partial remission, and two nodular partial remission (overall response rate 62%). Stem cell mobilization and harvesting (> or = 2 x 10(6) stem cells/kg body weight) were successful in 12 of 20 patients. Rituximab infusion-related adverse events were moderate. The main grade 3/4 adverse events during induction were neutropenia and lymphocytopenia. Rituximab plus cladribine was effective; however, the CR rate was modest and stem cell harvest was impaired in a large number of responding patients.
Resumo:
Nowadays, aerosol processes are widely used for the manufacture of nanoparticles (NPs), creating an increased occupational exposure risk of workers, laboratory personnel and scientists to airborne particles. There is evidence that possible adverse effects are linked with the accumulation of NPs in target cells, pointing out the importance of understanding the kinetics of particle internalization. In this context, the uptake kinetics of representative airborne NPs over 30 min and their internalization after 24 h post-exposure were investigated by the use of a recently established exposure system. This system combines the production of aerosolized cerium oxide (CeO(2)) NPs by flame spray synthesis with its simultaneous particle deposition from the gas-phase onto A549 lung cells, cultivated at the air-liquid interface. Particle uptake was quantified by mass spectrometry after several exposure times (0, 5, 10, 20 and 30 min). Over 35% of the deposited mass was found internalized after 10 min exposure, a value that increased to 60% after 30 min exposure. Following an additional 24 h post-incubation, a time span, after which adverse biological effects were observed in previous experiments, over 80% of total CeO(2) could be detected intracellularly. On the ultrastructural level, focal cerium aggregates were present on the apical surface of A549 cells and could also be localized intracellularly in vesicular structures. The uptake behaviour of aerosolized CeO(2) is in line with observations on cerium suspensions, where particle mass transport was identified as the rate-limiting factor for NP internalization.
Resumo:
The primary objective of this study was to clinically and histologically evaluate periodontal wound healing/regeneration following surgical implantation of recombinant human growth/differentiation factor-5 (rhGDF-5) adsorbed onto a particulate ?-tricalcium phosphate (?-TCP) carrier rhGDF-5/?-TCP into periodontal defects in man.
Resumo:
Surgical repair of the rotator cuff repair is one of the most common procedures in orthopedic surgery. Despite it being the focus of much research, the physiological tendon-bone insertion is not recreated following repair and there is an anatomic non-healing rate of up to 94%. During the healing phase, several growth factors are upregulated that induce cellular proliferation and matrix deposition. Subsequently, this provisional matrix is replaced by the definitive matrix. Leukocyte- and platelet-rich fibrin (L-PRF) contain growth factors and has a stable dense fibrin matrix. Therefore, use of LPRF in rotator cuff repair is theoretically attractive. The aim of the present study was to determine 1) the optimal protocol to achieve the highest leukocyte content; 2) whether L-PRF releases growth factors in a sustained manner over 28 days; 3) whether standard/gelatinous or dry/compressed matrix preparation methods result in higher growth factor concentrations. 1) The standard L-PRF centrifugation protocol with 400 x g showed the highest concentration of platelets and leukocytes. 2) The L-PRF clots cultured in medium showed a continuous slow release with an increase in the absolute release of growth factors TGF-β1, VEGF and MPO in the first 7 days, and for IGF1, PDGF-AB and platelet activity (PF4=CXCL4) in the first 8 hours, followed by a decrease to close to zero at 28 days. Significantly higher levels of growth factor were expressed relative to the control values of normal blood at each culture time point. 3) Except for MPO and the TGFβ-1, there was always a tendency towards higher release of growth factors (i.e., CXCL4, IGF-1, PDGF-AB, and VEGF) in the standard/gelatinous- compared to the dry/compressed group. L-PRF in its optimal standard/gelatinous-type matrix can store and deliver locally specific healing growth factors for up to 28 days and may be a useful adjunct in rotator cuff repair.
Resumo:
Gamma zero-lag phase synchronization has been measured in the animal brain during visual binding. Human scalp EEG studies used a phase locking factor (trial-to-trial phase-shift consistency) or gamma amplitude to measure binding but did not analyze common-phase signals so far. This study introduces a method to identify networks oscillating with near zero-lag phase synchronization in human subjects.
Resumo:
Solid oxide fuel cell (SOFC) technology has the potential to be a significant player in our future energy technology repertoire based on its ability to convert chemical energy into electrical energy. Infiltrated SOFCs, in particular, have demonstrated improved performance and at lower cost than traditional SOFCs. An infiltrated electrode comprises porous ceramic scaffolding (typically constructed from the oxygen ion conducting material) that is infiltrated with electron conducting and catalytic particles. Two important SOFC electrode properties are effective conductivity and three phase boundary density (TPB). Researchers study these electrode properties separately, and fail to recognize them as competing properties. This thesis aims to (1) develop a method to model the TPB density and use it to determine the effect of porosity, scaffolding particle size, and pore former size on TPB density as well as to (2) compare the effect of porosity, scaffolding particle size, and pore former size on TPB density and effective conductivity to determine a desired set of parameters for infiltrated SOFC electrode performance. A computational model was used to study the effect of microstructure parameters on the effective conductivity and TPB density of the infiltrated SOFC electrode. From this study, effective conductivity and TPB density are determined to be competing properties of SOFC electrodes. Increased porosity, scaffolding particle size, and pore former particle size increase the effective conductivity for a given infiltrate loading above percolation threshold. Increased scaffolding particle size and pore former size ratio, however, decreases the TPB density. The maximum TPB density is achievable between porosities of 45% and 60%. The effect of microstructure parameters are more prominent at low loading with scaffolding particle size being the most significant factor and pore former size ratio being the least significant factor.