964 resultados para Petroleum Hydrocarbons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

About 50-90 percent of the hydrocarbons that escape combustion during flame passage in spark-ignition engine operation are oxidized in the cylinder before leaving the system. The process involves the transport of unreacted fuel from cold walls towards the hotter burned gas regions and subsequent reaction. In order to understand controlling factors in the process, a transient one-dimensional reactive-diffusive model has been formulated for simulating the oxidation processes taking place in the reactive layer between hot burned gases and cold unreacted air/fuel mixture, with initial and boundary conditions provided by the emergence of hydrocarbons from the piston top land crevice. Energy and species conservation equations are solved for the entire process, using a detailed chemical kinetic mechanism for propane. Simulation results show that the post-flame oxidation process takes place within a reactive layer where intermediate hydrocarbon products are formed at temperatures above 1100-1200 K, followed by a carbon monoxide conversion region closer to the hot burned gases. Model results show that most of hydrocarbons leaving the crevice are completely oxidized inside the cylinder. The largest contribution of remaining hydrocarbons are those leaving the crevice at temperatures below 1400 K. The largest fraction of non-fuel (intermediate) hydrocarbons results from hydrocarbons leaving the crevice when core temperatures are around 1400 K Copyright © 1997 Society of Automotive Engineers, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to understand how unburned hydrocarbons emerge from SI engines and, in particular, how non-fuel hydrocarbons are formed and oxidized, a new gas sampling technique has been developed. A sampling unit, based on a combination of techniques used in the Fast Flame Ionization Detector (FFID) and wall-mounted sampling valves, was designed and built to capture a sample of exhaust gas during a specific period of the exhaust process and from a specific location within the exhaust port. The sampling unit consists of a transfer tube with one end in the exhaust port and the other connected to a three-way valve that leads, on one side, to a FFID and, on the other, to a vacuum chamber with a high-speed solenoid valve. Exhaust gas, drawn by the pressure drop into the vacuum chamber, impinges on the face of the solenoid valve and flows radially outward. Once per cycle during a specified crank angle interval, the solenoid valve opens and traps exhaust gas in a storage unit, from which gas chromatography (GC) measurements are made. The port end of the transfer tube can be moved to different locations longitudinally or radially, thus allowing spatial resolution and capturing any concentration differences between port walls and the center of the flow stream. Further, the solenoid valve's opening and closing times can be adjusted to allow sampling over a window as small as 0.6 ms during any portion of the cycle, allowing resolution of a crank angle interval as small as 15°CA. Cycle averaged total HC concentration measured by the FFID and that measured by the sampling unit are in good agreement, while the sampling unit goes one step further than the FFID by providing species concentrations. Comparison with previous measurements using wall-mounted sampling valves suggests that this sampling unit is fully capable of providing species concentration information as a function of air/fuel ratio, load, and engine speed at specific crank angles. © Copyright 1996 Society of Automotive Engineers, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extent of oxidation of hydrocarbons desorbing from the oil layer has been measured directly in a hydrogen-fueled, spark-ignited engine in which the lubricant oil was doped with a single component hydrocarbon. The amount of hydrocarbon desorbed and oxidized could be measured simultaneously as the dopant was only source of carbon-containing species. The fraction oxidized was strongly dependent on engine load, hydrogen fuel-air ratio and dopant chemical reactivity, but only modestly dependent on spark timing and nitrogen dilution levels below 20 percent. Fast FID measurements at the cylinder exit showed that the surviving hydrocarbons emerge late in the exhaust stroke. © Copyright 1996 Society of Automotive Engineers, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composting is being widely employed in the treatment of petroleum waste. The purpose of this study was to find the optimum control parameters for petroleum waste in-vessel composting. Various physical and chemical parameters were monitored to evaluate their influence on the microbial communities present in composting. The CO2 evolution and the number of microorganisms were measured as the activity of composting. The results demonstrated that the optimum temperature, pH and moisture content were 56.5 - 59.5 degreesC, 7.0 - 8.5 and 55 % - 60%, respectively. Under the optimum conditions, the removal efficiency of petroleum hydrocarbon reached 83.29% after 30 days composting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, by the use of partial least squares (PLS) method and 26 quantum chemical descriptors computed by PM3 Hamiltonian, a quantitative structure-property relationship (QSPR) model was developed for reductive dehalogenation rate constants of 13 halogenated aliphatic compounds in sediment slurry under anaerobic conditions. The model can be used to explain the dehalogenation mechanism. Halogenated aliphatic compounds with great energy of the lowest unoccupied molecular orbital (E-lumo), total energy (TE), electronic energy (EE), the smallest bond order of the carbon-halogen bonds (BO) and the most positive net atomic charges on an atom of the molecule (q(+)) values tend to be reductively dehalogenated slow, whereas halogenated aliphatic compounds with high values of molecular weight (Mw), average molecular polarizability (a) and core-core repulsion energy (CCR) values tend to be reductively dehalogenated fastest. (C) 2001 Published by Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Green-lipped mussels (Perna viridis) were collected from a site in Hong Kong which is relatively free from polycyclic aromatic hydrocarbon (PAH) contamination, and maintained in situ at this and three other sites with different degrees of PAH contamination. The transplanted mussels were retrieved after a 30-day field exposure. DNA adducts in the gill tissues were quantified, and tissue concentrations of benzo[a]pyrene as well as total PAHs (with potential carcinogenicity) determined for individual mussels. Results indicate that (1) tissue concentration of PAHs and adduct levels in mussels collected from a single site can be highly variable; and (2) adduct levels were related to tissue concentrations of benzo[a]pyrene as well as total PAHs of individual animals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sources and distribution of polycyclic aromatic hydrocarbons (PAH) in the Ya-Er Lake area (Hubei, China) sediment cores of 3 ponds in the shallow Ya-Er Lake were investigated for 16 PAH. Analytical procedure included extraction by ultrasonication, clean-up by gel-permeation and quantification by HPLC with fluorescence detection. The total PAH amount in sediment samples of the Ya-Er Lake ranged from 68 to 2242 mu g/kg. Concentrations decreased from pond 1 to pond 3 and from upper to lower sediment layers. In addition a soil sample from Ya-Er Lake area showed a total PAH amount of 58 mu g/kg. The PAH pattern in lower sediment layers were similar to that of the soil sample which indicates an atmospheric deposition into the sediments prior to 1970 only. The PAH profile of upper sediment samples, which differs completely from that of lower layers, may be explained by a gradually increasing input of mixed combustion and raw fuel sources since 1970. Therefore the origin of increased PAH contamination in Ya-Er Lake during the last 3 decades has been probably an industrial waste effluent in pond 1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A procedure for purifying single-walled carbon nanotubes (SWNTs) synthesized by the catalytic decomposition of hydrocarbons has been developed. Based on the results from SEM observations, EDS analysis and Raman measurements, it was found that amorphous carbon, catalyst particles, vapor-grown carbon nanofibers and multi-walled carbon nanotubes were removed from the ropes of SWNTs without damaging the SWNT bundles, and a 40% yield of the SWNTs with a purity of about 95% was achieved after purification. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microporous HZSM-5 zeolite and mesoporous SiO2 supported Ru-Co catalysts of various Ru adding amounts were prepared and evaluated for Fischer-Tropsch synthesis (FTS) of gasoline-range hydrocarbons (C-5-C-12). The tailor-made Ru-Co/SiO2/HZSM-5 catalysts possessed both micro- and mesopores, which accelerated hydrocracking/hydroisomerization of long-chain products and provided quick mass transfer channels respectively during FTS. In the same time. Ru increased Cor reduction degree by hydrogen spillover, thus CO conversion of 62.8% and gasoline-range hydrocarbon selectivity of 47%, including more than 14% isoparaffins, were achieved simultaneously when Ru content was optimized at 1 wt% in Ru-Co/SiO2/HZSM-5 catalyst.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method, a molecular thermodynamic model based on statistical mechanics, is employed to predict the hydrate dissociation conditions for binary gas mixtures with carbon dioxide, hydrogen, hydrogen sulfide, nitrogen, and hydrocarbons in the presence of aqueous solutions. The statistical associating fluid theory (SAFT) equation of state is employed to characterize the vapor and liquid phases and the statistical model of van der Waals and Platteeuw for the hydrate phase. The predictions of the proposed model were found to be in satisfactory to excellent agreement with the experimental data.