886 resultados para Petroleum -- Geology -- Papua New Guinea -- Papuan Basin
Resumo:
The conventional model of leaching volcanic rocks as a source of metals in a seafloor hydrothermal systems has been tested by examining the behavior of Pb and other trace elements during hydrothermal alteration. ODP Leg 193 drill sites 1188 (Snowcap) and 1189 (Roman Ruins) on Pual Ridge in the eastern Manus Basin offshore eastern Papua New Guinea provide a unique three-dimensional window into an active back-arc hydrothermal system. We investigate by means of a LA-ICP-MS microbeam technique the capacity of Pb to be leached from a host volcanic rock exposed to various types and intensities of alteration. Our results are in general agreement with previous studies that utilized bulk analytical techniques but provide a more detailed explanation of the processes. Fresh representative dacitic lavas from the Pual Ridge have an average whole rock Pb content of 5.2 ppm, an average interstitial glass Pb content of 5.6 ppm and an average plagioclase Pb content of 1.0 ppm. Altered matrix samples have highly variable Pb values ranging from 0 to 52.4 ppm. High Pb values in altered samples are associated with a low temperature chlorite and clay mineral assemblage, in some cases overprinted by a high temperature (up to 350°C) silica-rich "bleaching" alteration. Only the most highly altered matrix samples have REE patterns that differ from the fresh Pual Ridge dacite. This may represent either different lava histories or alteration characteristics that have affected normally immobile REEs. Altered samples with the highest Pb values have similar REE patterns to those of the local unaltered lavas. They are compositionally similar to typical Pual Ridge dacites indicating a genetic relationship between the main regional volcanic suite and the subseafloor hydrothermally altered, Pb-enriched material. Relative loss/gain for Pb between the analyzed altered samples and a calculated precursor show a maximum relative gain of 901%. Samples with relative Pb gain from both drill sites are associated with lower temperature alteration mineral assemblages characterized by pervasive chloritization. The related lower temperature (220-250°C) neutral to slightly acidic fluids have been ascribed by others to return circulation of hydrothermal fluids that did not interact with seawater. Because altered samples have a higher Pb content than the fresh precursor, leaching of fresh volcanic rocks cannot be the source of Pb in the hydrothermal systems.
Resumo:
The organic geochemistry of Sites 1108 and 1109 of the Woodlark Basin, offshore Papua New Guinea, was studied to determine whether thermally mature hydrocarbons were present in the penetrated section and, if present, whether they are genetically related to the penetrated "coaly" interval. Both the organic carbon and pyrolysis data indicate that there is no significant hydrocarbon source-rock potential at Site 1108. The hydrocarbons encountered during drilling appear to be indigenous and not migrated products or contaminants. In contrast, the coaly interval at Site 1109 contains zones with significant hydrocarbon-generation potential. Several independent lines of evidence indicate that the coaly sequence encountered at Site 1109 is thermally immature. The Site 1108 methane stable-carbon isotope composition does not display a clear trend with depth as would be expected if it was solely reflecting a maturation profile. The measured isotopic composition of methane has most probably been altered by fractionation during sample handling and storage. This fractionation would result in isotopically heavier values than would be obtained on free gas. The organic geochemical data gathered indicate that Site 1108 can be safely revisited and that the organic-rich sediments encountered at Site 1109 were not the source of the gas encountered at Site 1108.
Resumo:
At Site 1117, drilled during Leg 180 of the Ocean Drilling Program in the Woodlark Basin, we cored a fault zone and recovered fault gouge, mylonitized and brecciated gabbros, and undeformed gabbro. We measured the anisotropy of magnetic susceptibility for the rock samples. The susceptibilities of the fault gouge samples were lower than those of the undeformed gabbro, and those of deformed gabbros were lowest. The anisotropy degrees of the fault gouge samples were higher than those of the deformed and undeformed gabbros. Oblate magnetic fabrics were dominant in the samples from the fault zone.
Resumo:
We report results from boron, carbon and oxygen stable isotope analyses of faulted and veined rocks recovered by scientific ocean drilling during ODP Leg 180 in the western Woodlark Basin, off Papua New Guinea. In this area of active continental extension, crustal break-up and incipient seafloor spreading, a shallow-dipping, seismically active detachment fault accommodates strain, defining a zone of mylonites and cataclasites, vein formation and fluid infiltration. Syntectonic microstructures and vein-fill mineralogy suggest frictional heating during slip during extension and exhumation of Moresby Seamount. Low carbon and oxygen isotope ratios of calcite veins indicate precipitation from hydrothermal fluids (delta13C PDB down to -17?; delta18O PDB down to -22?) formed by both dehydration and decarbonation. Boron contents are low (<7 ppm), indicating high-grade metamorphic source rock for the fluids. Some of the delta11B signatures (17-35?; parent solutions to calcite vein fills) are low when compared to deep-seated waters in other tectonic environments, likely reflecting preferential loss of 11B during low-grade metamorphism at depth. Pervasive devolatilization and flux of CO2-rich fluids are evident from similar vein cement geochemistry in the detachment fault zone and splays further updip. Multiple rupture-and-healing history of the veins suggests that precipitation may be an important player in fluid pressure evolution and, hence, seismogenic fault movement.