869 resultados para Pedersen
Resumo:
Trying to conceive and being pregnant is an emotional period for those involved. In the majority of patients suffering from inflammatory bowel disease, maintenance therapy is required during pregnancy to control the disease, and disease control might necessitate introduction of new drugs during a vulnerable period. In this updated consensus on the reproduction and pregnancy in inflammatory bowel disease reproductive issues including fertility, the safety of drugs during pregnancy and lactation are discussed.
Resumo:
Von Dr. Rasmus Pedersen
Resumo:
Von Dr. R. Pedersen
Resumo:
by Johs. Pedersen. [Transl. by Aslaug Møller]
Resumo:
The core samples of mid-ocean-ridge basalts (including Indian and Pacific type) recovered from the Southeast Indian Ridge (SEIR) area near the Australian Antarctic Discordance during Ocean Drilling Program Leg 187 were studied using rock magnetism, mineralogy, and petrography methods. On the basis of thermomagnetic analyses and low-temperature magnetometry, the dominant magnetic carrier in most of the basalt samples (pillow basalts) is characterized as titanomaghemite, which presumably formed by low-temperature oxidation of primary titanomagnetite. Some samples from unaltered massive basalts contain nearly unoxidized titanomagnetite as the main magnetic mineral. A metadiabase sample showing greenschist facies metamorphism contains magnetic minerals dominated by magnetite. The pillow basalts contain titanomaghemite ranging from stable single-domain to pseudosingle-domain (PSD) grains, and the majority are characterized by a single stable component of remanence. The massive basalts show hysteresis features of larger PSD grains and contain a very low coercivity remanence. The values of natural remanent magnetization (NRM) of the samples in this SEIR area are on the same order as those of other oceanic ridge basalts. They show a general decreasing trend of NRM with increasing crust age. However, the values of NRM show no correlation either with the tectonic zonations (Zone A vs. Zone B) or with the mantle provinces (Pacific vs. Indian types).
Resumo:
Atmospheric carbon dioxide concentrations were significantly lower during glacial periods than during intervening interglacial periods, but the mechanisms responsible for this difference remain uncertain. Many recent explanations call on greater carbon storage in a poorly ventilated deep ocean during glacial periods (Trancois et al., 1997, doi:10.1038/40073; Toggweiler, 1999, doi:10.1029/1999PA900033; Stephens and Keeling, 2000, doi:10.1038/35004556; Marchitto et al., 2007, doi:10.1126/science.1138679; Sigman and Boyle, 2000, doi:10.1038/35038000), but direct evidence regarding the ventilation and respired carbon content of the glacial deep ocean is sparse and often equivocal (Broecker et al., 2004, doi:10.1126/science.1102293). Here we present sedimentary geochemical records from sites spanning the deep subarctic Pacific that -together with previously published results (Keigwin, 1998, doi:10.1029/98PA00874)- show that a poorly ventilated water mass containing a high concentration of respired carbon dioxide occupied the North Pacific abyss during the Last Glacial Maximum. Despite an inferred increase in deep Southern Ocean ventilation during the first step of the deglaciation (18,000-15,000 years ago) (Marchitto et al., 2007, doi:10.1126/science.1138679; Monnin et al., 2001, doi:10.1126/science.291.5501.112), we find no evidence for improved ventilation in the abyssal subarctic Pacific until a rapid transition ~14,600 years ago: this change was accompanied by an acceleration of export production from the surface waters above but only a small increase in atmospheric carbon dioxide concentration (Monnin et al., 2001, doi:10.1126/science.291.5501.112). We speculate that these changes were mechanistically linked to a roughly coeval increase in deep water formation in the North Atlantic (Robinson et al., 2005, doi:10.1126/science.1114832; Skinner nd Shackleton, 2004, doi:10.1029/2003PA000983; McManus et al., 2004, doi:10.1038/nature02494), which flushed respired carbon dioxide from northern abyssal waters, but also increased the supply of nutrients to the upper ocean, leading to greater carbon dioxide sequestration at mid-depths and stalling the rise of atmospheric carbon dioxide concentrations. Our findings are qualitatively consistent with hypotheses invoking a deglacial flushing of respired carbon dioxide from an isolated, deep ocean reservoir periods (Trancois et al., 1997, doi:10.1038/40073; Toggweiler, 1999, doi:10.1029/1999PA900033; Stephens and Keeling, 2000, doi:10.1038/35004556; Marchitto et al., 2007, doi:10.1126/science.1138679; Sigman and Boyle, 2000, doi:10.1038/35038000; Boyle, 1988, doi:10.1038/331055a0), but suggest that the reservoir may have been released in stages, as vigorous deep water ventilation switched between North Atlantic and Southern Ocean source regions.