977 resultados para Pattern Informatics Method
Resumo:
The effect of having a fixed differential-group delay term in the coarse-step method results in a periodic pattern in the autocorrelation function. We solve this problem by inserting a varying DGD term at each integration step, according to a Gaussian distribution. Simulation results are given to illustrate the phenomenon and provide some evidence, about its statistical nature.
Resumo:
Subunit vaccine discovery is an accepted clinical priority. The empirical approach is time- and labor-consuming and can often end in failure. Rational information-driven approaches can overcome these limitations in a fast and efficient manner. However, informatics solutions require reliable algorithms for antigen identification. All known algorithms use sequence similarity to identify antigens. However, antigenicity may be encoded subtly in a sequence and may not be directly identifiable by sequence alignment. We propose a new alignment-independent method for antigen recognition based on the principal chemical properties of protein amino acid sequences. The method is tested by cross-validation on a training set of bacterial antigens and external validation on a test set of known antigens. The prediction accuracy is 83% for the cross-validation and 80% for the external test set. Our approach is accurate and robust, and provides a potent tool for the in silico discovery of medically relevant subunit vaccines.
Resumo:
The reasonable choice is a critical success factor for decision- making in the field of software engineering (SE). A case-driven comparative analysis has been introduced and a procedure for its systematic application has been suggested. The paper describes how the proposed method can be built in a general framework for SE activities. Some examples of experimental versions of the framework are brie y presented.
Resumo:
The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006
Resumo:
Due to wide range of interest in use of bio-economic models to gain insight into the scientific management of renewable resources like fisheries and forestry,variational iteration method (VIM) is employed to approximate the solution of the ratio-dependent predator-prey system with constant effort prey harvesting.The results are compared with the results obtained by Adomian decomposition method and reveal that VIM is very effective and convenient for solving nonlinear differential equations.
Resumo:
This paper introduces an encoding of knowledge representation statements as regular languages and proposes a two-phase approach to processing of explicitly declared conceptual information. The idea is presented for the simple conceptual graphs where conceptual pattern search is implemented by the so called projection operation. Projection calculations are organised into off-line preprocessing and run-time computations. This enables fast run-time treatment of NP-complete problems, given that the intermediate results of the off-line phase are kept in suitable data structures. The experiments with randomly-generated, middle-size knowledge bases support the claim that the suggested approach radically improves the run-time conceptual pattern search.
Resumo:
We consider a model eigenvalue problem (EVP) in 1D, with periodic or semi–periodic boundary conditions (BCs). The discretization of this type of EVP by consistent mass finite element methods (FEMs) leads to the generalized matrix EVP Kc = λ M c, where K and M are real, symmetric matrices, with a certain (skew–)circulant structure. In this paper we fix our attention to the use of a quadratic FE–mesh. Explicit expressions for the eigenvalues of the resulting algebraic EVP are established. This leads to an explicit form for the approximation error in terms of the mesh parameter, which confirms the theoretical error estimates, obtained in [2].
Resumo:
In this paper a new method which is a generalization of the Ehrlich-Kjurkchiev method is developed. The method allows to find simultaneously all roots of the algebraic equation in the case when the roots are supposed to be multiple with known multiplicities. The offered generalization does not demand calculation of derivatives of order higher than first simultaneously keeping quaternary rate of convergence which makes this method suitable for application from practical point of view.
Resumo:
The generalized Wiener-Hopf equation and the approximation methods are used to propose a perturbed iterative method to compute the solutions of a general class of nonlinear variational inequalities.
Resumo:
The present paper investigates the existence of integral manifolds for impulsive differential equations with variable perturbations. By means of piecewise continuous functions which are generalizations of the classical Lyapunov’s functions, sufficient conditions for the existence of integral manifolds of such equations are found.
Resumo:
The general iteration method for nonexpansive mappings on a Banach space is considered. Under some assumption of fast enough convergence on the sequence of (“almost” nonexpansive) perturbed iteration mappings, if the basic method is τ−convergent for a suitable topology τ weaker than the norm topology, then the perturbed method is also τ−convergent. Application is presented to the gradient-prox method for monotone inclusions in Hilbert spaces.
Resumo:
* This work was supported by National Science Foundation grant DMS 9404431.
Resumo:
In this paper we give an iterative method to compute the principal n-th root and the principal inverse n-th root of a given matrix. As we shall show this method is locally convergent. This method is analyzed and its numerical stability is investigated.
Resumo:
We investigate the pattern-dependent decoding failures in full-field electronic dispersion compensation (EDC) by offline processing of experimental signals, and find that the performance of such an EDC receiver may be degraded by an isolated "1" bit surrounded by long strings of consecutive "0s". By reducing the probability of occurrence of this kind of isolated "1" and using a novel adaptive threshold decoding method, we greatly improve the compensation performance to achieve 10-Gb/s on-off keyed signal transmission over 496-km field-installed single-mode fiber without optical dispersion compensation.
Resumo:
Mathematics Subject Classification: 26A33, 31B10