851 resultados para Patient-centred
Resumo:
Aim: To describe the positioning of patients managed in an intensive care unit (ICU); assess how frequently these patients were repositioned; and determine if any specific factors influenced how, why or when patients were repositioned in the ICU. Background: Alterations in body position of ICU patients are important for patient comfort and are believed to prevent and/or treat pressure ulcers, improve respiratory function and combat the adverse effects of immobility. There is a paucity of research on the positioning of critically ill patients in Saudi Arabian ICUs. Design and Methods: A prospective observational study was undertaken. Participant demographic data were collected as were clinical factors (i.e. ventilation status, primary diagnosis, co-morbidities and Ramsay sedation score) and organizational factors (i.e. time of day, type of mattress or beds used, nurse/patient ratio and the patient's position). Clinical and some organization data were recorded over a continuous 48 hour period. Result: Twenty-eight participants were recruited to the study. No participant was managed in either a flat or prone position. Obese participants were most likely to be managed in a supine position. The mean time between turns was two hours. There was no significant association between the mean time between turns and the recorded variables related to patients' demographic and organizational considerations. Conclusion: Results indicate that patient positioning in the ICU was a direct result of unit policy - it appeared that patients were not repositioned based upon evaluation of their clinical condition but rather according to a two-hour ICU timetable
Resumo:
Background: Critically ill patients are at high risk for pressure ulcer (PrU) development due to their high acuity and the invasive nature of the multiple interventions and therapies they receive. With reported incidence rates of PrU development in the adult critical care population as high as 56%, the identification of patients at high risk of PrU development is essential. This paper will explore the association between PrU development and risk factors. It will also explore PrU development and the use of risk assessment scales for critically ill patients in adult intensive care units. Method: A literature search from 2000 to 2012 using the CINHAL, Cochrane Library, EBSCOHost, Medline (via EBSCOHost), PubMed, ProQuest and Google Scholar databases was conducted. Key words used were: pressure ulcer/s; pressure sore/s; decubitus ulcer/s; bed sore/s; critical care; intensive care; critical illness; prevalence; incidence; prevention; management; risk factor; risk assessment scale. Results: Nineteen articles were included in this review; eight studies addressing PrU risk factors, eight studies addressing risk assessment scales and three studies overlapping both. Results from the studies reviewed identified 28 intrinsic and extrinsic risk factors which may lead to PrU development. Development of a risk factor prediction model in this patient population, although beneficial, appears problematic due to many issues such as diverse diagnoses and subsequent patient needs. Additionally, several risk assessment instruments have been developed for early screening of patients at higher risk of developing PrU in the ICU. No existing risk assessment scales are valid for identification high risk critically ill patient,with the majority of scales potentially over-predicting patients at risk for PrU development. Conclusion: Research studies to inform the risk factors for potential pressure ulcer development are inconsistent. Additionally, there is no consistent or clear evidence which demonstrates any scale to better or more effective than another when used to identify the patients at risk for PrU development. Furthermore robust research is needed to identify the risk factors and develop valid scales for measuring the risk of PrU development in ICU.
Resumo:
This project has provided a new understanding of the passenger experience in Australian international airport departure terminals. A novel understanding of the passenger experience developed by observing the activities passengers carried out on their day of travel, and interviewing passengers and staff members. The development of the Taxonomy of Passenger Activities (TOPA) has been an important outcome of this research. It provides a new understanding of the airport passenger experience at departure. The Taxonomy of Passenger Activities identifies the activities that improve the experience of passengers and the processing efficiency of the airport terminal.
Resumo:
Background and purpose: The purpose of the work presented in this paper was to determine whether patient positioning and delivery errors could be detected using electronic portal images of intensity modulated radiotherapy (IMRT). Patients and methods: We carried out a series of controlled experiments delivering an IMRT beam to a humanoid phantom using both the dynamic and multiple static field method of delivery. The beams were imaged, the images calibrated to remove the IMRT fluence variation and then compared with calibrated images of the reference beams without any delivery or position errors. The first set of experiments involved translating the position of the phantom both laterally and in a superior/inferior direction a distance of 1, 2, 5 and 10 mm. The phantom was also rotated 1 and 28. For the second set of measurements the phantom position was kept fixed and delivery errors were introduced to the beam. The delivery errors took the form of leaf position and segment intensity errors. Results: The method was able to detect shifts in the phantom position of 1 mm, leaf position errors of 2 mm, and dosimetry errors of 10% on a single segment of a 15 segment IMRT step and shoot delivery (significantly less than 1% of the total dose). Conclusions: The results of this work have shown that the method of imaging the IMRT beam and calibrating the images to remove the intensity modulations could be a useful tool in verifying both the patient position and the delivery of the beam.
Resumo:
Purpose: The precise shape of the three-dimensional dose distributions created by intensity-modulated radiotherapy means that the verification of patient position and setup is crucial to the outcome of the treatment. In this paper, we investigate and compare the use of two different image calibration procedures that allow extraction of patient anatomy from measured electronic portal images of intensity-modulated treatment beams. Methods and Materials: Electronic portal images of the intensity-modulated treatment beam delivered using the dynamic multileaf collimator technique were acquired. The images were formed by measuring a series of frames or segments throughout the delivery of the beams. The frames were then summed to produce an integrated portal image of the delivered beam. Two different methods for calibrating the integrated image were investigated with the aim of removing the intensity modulations of the beam. The first involved a simple point-by-point division of the integrated image by a single calibration image of the intensity-modulated beam delivered to a homogeneous polymethyl methacrylate (PMMA) phantom. The second calibration method is known as the quadratic calibration method and required a series of calibration images of the intensity-modulated beam delivered to different thicknesses of homogeneous PMMA blocks. Measurements were made using two different detector systems: a Varian amorphous silicon flat-panel imager and a Theraview camera-based system. The methods were tested first using a contrast phantom before images were acquired of intensity-modulated radiotherapy treatment delivered to the prostate and pelvic nodes of cancer patients at the Royal Marsden Hospital. Results: The results indicate that the calibration methods can be used to remove the intensity modulations of the beam, making it possible to see the outlines of bony anatomy that could be used for patient position verification. This was shown for both posterior and lateral delivered fields. Conclusions: Very little difference between the two calibration methods was observed, so the simpler division method, requiring only the single extra calibration measurement and much simpler computation, was the favored method. This new method could provide a complementary tool to existing position verification methods, and it has the advantage that it is completely passive, requiring no further dose to the patient and using only the treatment fields.
Resumo:
Introduction: The motivation for developing megavoltage (and kilovoltage) cone beam CT (MV CBCT) capabilities in the radiotherapy treatment room was primarily based on the need to improve patient set-up accuracy. There has recently been an interest in using the cone beam CT data for treatment planning. Accurate treatment planning, however, requires knowledge of the electron density of the tissues receiving radiation in order to calculate dose distributions. This is obtained from CT, utilising a conversion between CT number and electron density of various tissues. The use of MV CBCT has particular advantages compared to treatment planning with kilovoltage CT in the presence of high atomic number materials and requires the conversion of pixel values from the image sets to electron density. Therefore, a study was undertaken to characterise the pixel value to electron density relationship for the Siemens MV CBCT system, MVision, and determine the effect, if any, of differing the number of monitor units used for acquisition. If a significant difference with number of monitor units was seen then pixel value to ED conversions may be required for each of the clinical settings. The calibration of the MV CT images for electron density offers the possibility for a daily recalculation of the dose distribution and the introduction of new adaptive radiotherapy treatment strategies. Methods: A Gammex Electron Density CT Phantom was imaged with the MVCB CT system. The pixel value for each of the sixteen inserts, which ranged from 0.292 to 1.707 relative electron density to the background solid water, was determined by taking the mean value from within a region of interest centred on the insert, over 5 slices within the centre of the phantom. These results were averaged and plotted against the relative electron densities of each insert with a linear least squares fit was preformed. This procedure was performed for images acquired with 5, 8, 15 and 60 monitor units. Results: The linear relationship between MVCT pixel value and ED was demonstrated for all monitor unit settings and over a range of electron densities. The number of monitor units utilised was found to have no significant impact on this relationship. Discussion: It was found that the number of MU utilised does not significantly alter the pixel value obtained for different ED materials. However, to ensure the most accurate and reproducible MV to ED calibration, one MU setting should be chosen and used routinely. To ensure accuracy for the clinical situation this MU setting should correspond to that which is used clinically. If more than one MU setting is used clinically then an average of the CT values acquired with different numbers of MU could be utilized without loss in accuracy. Conclusions: No significant differences have been shown between the pixel value to ED conversion for the Siemens MV CT cone beam unit with change in monitor units. Thus as single conversion curve could be utilised for MV CT treatment planning. To fully utilise MV CT imaging for radiotherapy treatment planning further work will be undertaken to ensure all corrections have been made and dose calculations verified. These dose calculations may be either for treatment planning purposes or for reconstructing the delivered dose distribution from transit dosimetry measurements made using electronic portal imaging devices. This will potentially allow the cumulative dose distribution to be determined through the patient’s multi-fraction treatment and adaptive treatment strategies developed to optimize the tumour response.
Resumo:
We have taken a new method of calibrating portal images of IMRT beams and used this to measure patient set-up accuracy and delivery errors, such as leaf errors and segment intensity errors during treatment. A calibration technique was used to remove the intensity modulations from the images leaving equivalent open field images that show patient anatomy that can be used for verification of the patient position. The images of the treatment beam can also be used to verify the delivery of the beam in terms of multileaf collimator leaf position and dosimetric errors. A series of controlled experiments delivering an IMRT anterior beam to the head and neck of a humanoid phantom were undertaken. A 2mm translation in the position of the phantom could be detected. With intentional introduction of delivery errors into the beam this method allowed us to detect leaf positioning errors of 2mm and variation in monitor units of 1%. The method was then applied to the case of a patient who received IMRT treatment to the larynx and cervical nodes. The anterior IMRT beam was imaged during four fractions and the images calibrated and investigated for the characteristic signs of patient position error and delivery error that were shown in the control experiments. No significant errors were seen. The method of imaging the IMRT beam and calibrating the images to remove the intensity modulations can be a useful tool in verifying both the patient position and the delivery of the beam.
Resumo:
Background Falls are one of the most frequently occurring adverse events that impact upon the recovery of older hospital inpatients. Falls can threaten both immediate and longer-term health and independence. There is need to identify cost-effective means for preventing falls in hospitals. Hospital-based falls prevention interventions tested in randomized trials have not yet been subjected to economic evaluation. Methods Incremental cost-effectiveness analysis was undertaken from the health service provider perspective, over the period of hospitalization (time horizon) using the Australian Dollar (A$) at 2008 values. Analyses were based on data from a randomized trial among n = 1,206 acute and rehabilitation inpatients. Decision tree modeling with three-way sensitivity analyses were conducted using burden of disease estimates developed from trial data and previous research. The intervention was a multimedia patient education program provided with trained health professional follow-up shown to reduce falls among cognitively intact hospital patients. Results The short-term cost to a health service of one cognitively intact patient being a faller could be as high as A$14,591 (2008). The education program cost A$526 (2008) to prevent one cognitively intact patient becoming a faller and A$294 (2008) to prevent one fall based on primary trial data. These estimates were unstable due to high variability in the hospital costs accrued by individual patients involved in the trial. There was a 52% probability the complete program was both more effective and less costly (from the health service perspective) than providing usual care alone. Decision tree modeling sensitivity analyses identified that when provided in real life contexts, the program would be both more effective in preventing falls among cognitively intact inpatients and cost saving where the proportion of these patients who would otherwise fall under usual care conditions is at least 4.0%. Conclusions This economic evaluation was designed to assist health care providers decide in what circumstances this intervention should be provided. If the proportion of cognitively intact patients falling on a ward under usual care conditions is 4% or greater, then provision of the complete program in addition to usual care will likely both prevent falls and reduce costs for a health service.
Resumo:
Patient safety has become a significant and pressing policy issue. Around the world, governments, the health care sector and the public are increasingly cognizant of the need to improve the safety of care delivered by their health systems. Pressure for change has been created by highly publicized incidents in a number of countries involving unsafe acts that were significant both in scale and consequence and a number of empirical studies that revealed the high rates of unsafe acts and their consequences. The costs of unsafe health care – both personal and fiscal – to individuals, their families and their communities and to the state are massive. In this research project we explored one particular avenue for change – that is, the use of legal instruments by governments to improve patient safety. We did this through a comparative review of the use of legal instruments or frameworks in other countries (specifically Australia, Denmark, New Zealand, the United Kingdom, and the United States) as well as two non-health care related sectors in Canada (transportation and occupational health and safety). We began this research by reviewing the legal instruments and undertaking extensive literature reviews. Further information was gathered through in-person interviews with policy-makers and academics in the countries studied, and from policy-makers and academics expert in the health, occupational health and safety, and transportation sectors in Canada. Once descriptions of the various countries and sectors were drafted, we held small-group meetings with local experts on particular aspects of patient safety. We then hosted a national consultation meeting. We subsequently drafted this final report and the appendices, which fully describe the results of the background research. Finally, we prepared a summary version of the report as well as posters and papers to be published and delivered at conferences and meetings with relevant groups.
Resumo:
Abstract Background: Studies that compare Indigenous Australian and non-Indigenous patients who experience a cardiac event or chest pain are inconclusive about the reasons for the differences in-hospital and survival rates. The advances in diagnostic accuracy, medication and specialised workforce has contributed to a lower case fatality and lengthen survival rates however this is not evident in the Indigenous Australian population. A possible driver contributing to this disparity may be the impact of patient-clinician interface during key interactions during the health care process. Methods/Design: This study will apply an Indigenous framework to describe the interaction between Indigenous patients and clinicians during the continuum of cardiac health care, i.e. from acute admission, secondary and rehabilitative care. Adopting an Indigenous framework is more aligned with Indigenous realities, knowledge, intellects, histories and experiences. A triple layered designed focus group will be employed to discuss patient-clinician engagement. Focus groups will be arranged by geographic clusters i.e. metropolitan and a regional centre. Patient informants will be identified by Indigenous status (i.e. Indigenous and non-Indigenous) and the focus groups will be convened separately. The health care provider focus groups will be convened on an organisational basis i.e. state health providers and Aboriginal Community Controlled Health Services. Yarning will be used as a research method to facilitate discussion. Yarning is in congruence with the oral traditions that are still a reality in day-to-day Indigenous lives. Discussion: This study is nestled in a larger research program that explores the drivers to the disparity of care and health outcomes for Indigenous and non-Indigenous Australians who experience an acute cardiac admission. A focus on health status, risk factors and clinical interventions may camouflage critical issues within a patient-clinician exchange. This approach may provide a way forward to reduce the appalling health disadvantage experienced within the Indigenous Australian communities. Keywords: Patient-clinician engagement, Qualitative, Cardiovascular disease, Focus groups, Indigenous
Resumo:
We have previously reported a preliminary taxonomy of patient error. However, approaches to managing patients' contribution to error have received little attention in the literature. This paper aims to assess how patients and primary care professionals perceive the relative importance of different patient errors as a threat to patient safety. It also attempts to suggest what these groups believe may be done to reduce the errors, and how. It addresses these aims through original research that extends the nominal group analysis used to generate the error taxonomy. Interviews were conducted with 11 purposively selected groups of patients and primary care professionals in Auckland, New Zealand, during late 2007. The total number of participants was 83, including 64 patients. Each group ranked the importance of possible patient errors identified through the nominal group exercise. Approaches to managing the most important errors were then discussed. There was considerable variation among the groups in the importance rankings of the errors. Our general inductive analysis of participants' suggestions revealed the content of four inter-related actions to manage patient error: Grow relationships; Enable patients and professionals to recognise and manage patient error; be Responsive to their shared capacity for change; and Motivate them to act together for patient safety. Cultivation of this GERM of safe care was suggested to benefit from 'individualised community care'. In this approach, primary care professionals individualise, in community spaces, population health messages about patient safety events. This approach may help to reduce patient error and the tension between personal and population health-care.
Resumo:
Background The delivery of quality patient care in the emergency department (ED) is emerging as one of the most important service indicators to be measured in health services today. The emergency nurse practitioner role was implemented as a service innovation in a Emergency & Trauma Centre (ETC), Melbourne, Australia, in July 2004 .The primary aim of the role was intended to enhance healthcare services, improve the efficiency and timely delivery of high quality care to patients. Aim To conduct a retrospective study of patient presentations at the ETC to obtain a profile of the characteristics of patients managed by emergency nurse practitioners. Specifically the objectives of the study were to: 1) examine the demographics of the patient population 2) evaluate data on emergency department service indicators for this patient cohort Method All patients presenting to the ETC from January 01 2011 to December 31 2011 and managed by emergency nurse practitioners were included in the review. Data collection included baseline demographics, waiting times to be seen, length of stay, emergency department discharge diagnoses and referral patterns. Data were extracted and imported directly from the emergency department Patient Information System (Cerner log), for the specified time frame. Results A total of 5212 patients were reviewed in the study period. The median age of patients was 35 years and 61% of patients were male. The most common discharge diagnosis was open wounds to hand/wrist. Waiting times to be seen by the emergency nurse practitioner were 14 minutes and length of stay for patients with a discharge disposition of home were 122 minutes. Conclusions This study has provided information on patient baseline characteristics and performance on important service indicators for this patient sample that will inform further research to evaluate specific outcomes of the emergency nurse practitioner service.