906 resultados para Pasta cimentante


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En la aplicación de la técnica de extracción electroquímica de cloruros (EEC), tradicionalmente se ha venido empleando como ánodo externo una malla de Ti-RuO2. En este artículo se aportan los resultados de investigaciones basadas en la utilización de ánodos formados por pasta de cemento conductora con adición de nanofibras de carbono (NFC) y su aplicación en EEC. Las experiencias se desarrollaron en probetas de hormigón contaminado previamente con cloruro. Las eficiencias alcanzadas se compararon con las obtenidas empleando un ánodo tradicional (Ti-RuO2), así como pastas de cemento con adición de otros materiales carbonosos. Los resultados muestran la viabilidad en la utilización de la pasta de cemento conductora con NFC como ánodo en la aplicación en EEC en hormigón, encontrándose eficiencias similares a las obtenidas con la tradicional malla de Ti-RuO2 pero teniendo la ventaja añadida sobre esta de que es posible adaptarla a geometrías estructurales complejas al ser aplicada en forma de pasta.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Half-title.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ready to eat pasta meals are an important segment of convenience food, but these products are subjected to significant changes in physico-chemical properties during storage, which reduce their acceptability at the time of consumption. A deep understanding of the properties of the single phases, their dependence upon formulation, and the changes they undergo during storage is very important to intelligently intervene on products properties to improve their quality at the time of consumer’s consumption. This work has focused on the effect of formulation on physico-chemical properties of pasta and tomato sauce with a special focus on mechanical/rheological attributes and water status. Variable considered in pasta formulation were gluten, glycerol and moisture content and their effect was studied in both freshly cooked or shelf-stable cooked pasta. The effect of multiple hydrocolloids (at different levels) was considered in the case of tomato sauce. In the case of pasta, it was found that water content was indeed a very important variable in defying pasta mechanical properties and water status. Higher moisture contents in pasta resulted in softer samples and reduced the changes in physico-chemical parameters during storage. Glycerol was found to favor water uptake and to soften the pasta matrix, acting as plasticizer and increasing molecular mobility. The addition of gluten hardened pasta but did not affect the water status. The combination of higher amount of gluten (15%, g gluten / 100 g product) with higher moisture content (59-65%, g water / 100 g product) were found to minimize the physico-chemical changes occurring in RTE pasta meals during storage, improving quality at longer storage times. Hydrocolloids added into tomato sauce modulated its mechanical attributes and water status in very different manner, depending on hydrocolloid type and concentration. This may allow to produce tomato sauce for different applications and that are expected to have different performance if placed in contact with pasta in a RTE meal. Future work should include an investigation of how the interaction between the two phases (pasta and sauce) can be modulated and controlled by controlling the properties of the single phases with the goal of obtaining highly acceptable products also at longer storage times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compatibility testing between a drilling fluid and a cement slurry is one of the steps before an operation of cementing oil wells. This test allows us to evaluate the main effects that contamination of these two fluids may cause the technological properties of a cement paste. The interactions between cement paste and drilling fluid, because its different chemical compositions, may affect the cement hydration reactions, damaging the cementing operation. Thus, we carried out the study of the compatibility of non-aqueous drilling fluid and a cement slurry additives. The preparation procedures of the non-aqueous drilling fluid, the cement paste and completion of compatibility testing were performed as set out by the oil industry standards. In the compatibility test is evaluated rheological properties, thickening time, stability and compressive strength of cement pastes. We also conducted analyzes of scanning electron microscopy and X-ray diffraction of the mixture obtained by the compatibility test to determine the microstructural changes in cement pastes. The compatibility test showed no visual changes in the properties of the cement paste, as phase separation. However, after the addition of nonaqueous drilling fluid to cement slurry there was an increased amount of plastic viscosity, the yield point and gel strength. Among the major causative factors can include: chemical reaction of the components present in the non-aqueous drilling fluid as the primary emulsifier, wetting agent and paraffin oil, with the chemical constituents of the cement. There was a reduction in the compressive strength of the cement paste after mixing with this drilling fluid. Thickening test showed that the oil wetting agent and high salinity of the non-aqueous fluid have accelerating action of the handle of the cement paste time. The stability of the cement paste is impaired to the extent that there is increased contamination of the cement slurry with the nonaqueous fluid. The X-ray diffraction identified the formation of portlandite and calcium silicate in contaminated samples. The scanning electron microscopy confirmed the development of the identified structures in the X-ray diffraction and also found the presence of wells in the cured cement paste. The latter, formed by the emulsion stability of the drilling fluid in the cement paste, corroborate the reduction of mechanical strength. The oil wetting agent component of the non-aqueous drilling fluid, the modified cement hydration processes, mainly affecting the setting time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steam injection is an oil recovery method accomplished by introducing steam directly into the oil well to the reservoir. The steam causes dilation of the casing, which, after reduction in temperature, tends to return to the initial dimensions: causing the formation of cracks in the cement and loss of hydraulic isolation.. In this context, the type of the SBR latex is used to improve the flexibility of the cement matrix by reducing the amount of fatigue failure. To prevent these failures, the mechanical resistance parameters should be carefully adjusted to well conditions. This work aims to study the mechanical behavior of cement slurry systems additivated with SBR latex for cementing oil wells subject to steam injection. Through the central composite factorial design was studied the behavior of the compressive strength by varying the density of the paste between 1.75 g /cm³ (14.6 lb/ Gal) and 1.89 g/cm³ (15,8lb / Gal), curing time between 4 days and 28 days and concentration of SBR Latex between 0 L / m³ and 534.722 L / m³ (0 gpc and 4 gpc). The results showed that increasing the concentration of SBR latex, within the given ranges, there was a decreased compression resistance and elastic modulus by increasing the elastic deformability of the slurry. From the results it can determine best slurries formulation conditions in oil well cementing operations subject to steam injection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steam injection is an oil recovery method accomplished by introducing steam directly into the oil well to the reservoir. The steam causes dilation of the casing, which, after reduction in temperature, tends to return to the initial dimensions: causing the formation of cracks in the cement and loss of hydraulic isolation.. In this context, the type of the SBR latex is used to improve the flexibility of the cement matrix by reducing the amount of fatigue failure. To prevent these failures, the mechanical resistance parameters should be carefully adjusted to well conditions. This work aims to study the mechanical behavior of cement slurry systems additivated with SBR latex for cementing oil wells subject to steam injection. Through the central composite factorial design was studied the behavior of the compressive strength by varying the density of the paste between 1.75 g /cm³ (14.6 lb/ Gal) and 1.89 g/cm³ (15,8lb / Gal), curing time between 4 days and 28 days and concentration of SBR Latex between 0 L / m³ and 534.722 L / m³ (0 gpc and 4 gpc). The results showed that increasing the concentration of SBR latex, within the given ranges, there was a decreased compression resistance and elastic modulus by increasing the elastic deformability of the slurry. From the results it can determine best slurries formulation conditions in oil well cementing operations subject to steam injection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An amperometric FIA method for nitrite quantification based on nitrite electroreduction and employing a carbon paste electrode (CPE) chemically modified with iron hexacyanoferrate (HCF) as an amperometric detector was developed. The influence of experimental conditions on the preparation of the electrode materials was evaluated and the materials obtained in each study were used for the development of modified electrodes. The electrochemical sensors were prepared by a fast, simple, and inexpensive procedure, and the long-term performance of the electrodes were quite satisfactory as the stability was maintained over one year. HCF was an effective redox mediator for nitrite electroreduction in acidic media, allowing nitrite detection at +0.2 V vs. Ag/AgClsat, which is a potential free of possible interfering species that are normally present in food and water samples. The electrochemical cell used in the FIA system was similar to a batch injection analysis cell, enabling recirculation of the carrier solution. This is an attractive feature because it allows the use of a high flow rate (6 mL min-1) leading to high sensitivity and analysis speed, while keeping reagent consumption low. The proposed method had a detection limit of 9 μmol L-1 and was successfully employed for nitrite quantification in spiked water and sausage samples. The obtained results were in good agreement with those provided by the spectrophotometric official method. At a 95 % confidence level it was not observed statistical differences neither in nitrite content nor in the precision provided by both methods. The experimental conditions for the synthesis of HCF were optimized and the best electrode material was prepared by mixing FeCl3, K4[Fe(CN)6] and carbon powder subjected to an acid and thermal treatment (400 ºC), followed by ultrasonic agitation at 4 °C. This material was used to construct an electrode with improved analytical performance to reduce nitrite, which presented greater stability compared to HCF film electrodeposited on the EPC, showing that the preparation procedure of the electrode material is an effective strategy for the development of HCF modified electrodes.