949 resultados para Parametric Vibration
Resumo:
This paper presents a formulation of an approximate spectral element for uniform and tapered rotating Euler-Bernoulli beams. The formulation takes into account the varying centrifugal force, mass and bending stiffness. The dynamic stiffness matrix is constructed using the weak form of the governing differential equation in the frequency domain, where two different interpolating functions for the transverse displacement are used for the element formulation. Both free vibration and wave propagation analysis is performed using the formulated elements. The studies show that the formulated element predicts results, that compare well with the solution available in the literature, at a fraction of the computational effort. In addition, for wave propagation analysis, the element shows superior convergence. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The goal of this study is the multi-mode structural vibration control in the composite fin-tip of an aircraft. Structural model of the composite fin-tip with surface bonded piezoelectric actuators is developed using the finite element method. The finite element model is updated experimentally to reflect the natural frequencies and mode shapes accurately. A model order reduction technique is employed for reducing the finite element structural matrices before developing the controller. Particle swarm based evolutionary optimization technique is used for optimal placement of piezoelectric patch actuators and accelerometer sensors to suppress vibration. H{infty} based active vibration controllers are designed directly in the discrete domain and implemented using dSpace® (DS-1005) electronic signal processing boards. Significant vibration suppression in the multiple bending modes of interest is experimentally demonstrated for sinusoidal and band limited white noise forcing functions.
Resumo:
A new rotating beam finite element is developed in which the basis functions are obtained by the exact solution of the governing static homogenous differential equation of a stiff string, which results from an approximation in the rotating beam equation. These shape functions depend on rotation speed and element position along the beam and account for the centrifugal stiffening effect. Using this new element and the Hermite cubic finite element, a convergence study of natural frequencies is performed, and it is found that the new element converges much more rapidly than the conventional Hermite cubic element for the first two modes at higher rotation speeds. The new element is also applied for uniform and tapered rotating beams to determine the natural frequencies, and the results compare very well with the published results given in the literature.
Resumo:
This paper presents the results from parametric finite element analyses of geocell-supported embankments constructed on weak foundation soils. A composite model is used to numerically simulate the improvement in the strength and stiffness of the soil as a result of geocell confinement. The shear strength of the geocell-encased soil is obtained as a function of the additional confining pressure due to the geocell encasement considering it as a thin cylinder subjected to internal pressure. The stiffness of the geocell-encased soil is obtained from the stiffness of the unreinforced soil and the tensile modulus of the geocell material using an empirical equation. The validity of the model is verified by simulating the laboratory experiments on model geocell-supported embankments. Parametric finite element analyses of the geocell-supported embankments are carried out by varying the dimensions of the geocell layer, the tensile strength of the material used for fabricating the geocell layer, the properties of the infill soil, and the depth of the foundation layer. Some important guidelines for selecting the geocell reinforcement to support embankments on weak foundation soils are established through these numerical studies.
Resumo:
Suspension bridges are flexible and vibration sensitive structures that exhibit complex and multi-modal vibration. Due to this, the usual vibration based methods could face a challenge when used for damage detection in these structures. This paper develops and applies a mode shape component specific damage index (DI) to detect and locate damage in a suspension bridge with pre-tensioned cables. This is important as suspension bridges are large structures and damage in them during their long service lives could easily go un-noticed. The capability of the proposed vibration based DI is demonstrated through its application to detect and locate single and multiple damages with varied locations and severity in the cables of the suspension bridge. The outcome of this research will enhance the safety and performance of these bridges which play an important role in the transport network.
Resumo:
With the increased utilization of advanced composites in strategic industries, the concept of Structural Health Monitoring (SHM) with its inherent advantages is gaining ground over the conventional methods of NDE and NDI. The most attractive feature of this concept is on-line evaluation using embedded sensors. Consequently, development of methodologies with identification of appropriate sensors such as PVDF films becomes the key for exploiting the new concept. And, of the methods used for on-line evaluation acoustic emission has been most effective. Thus, Acoustic Emission (AE) generated during static tensile loading of glass fiber reinforced plastic composites was monitored using a Polyvinylidene fluoride (PVDF) film sensor. The frequency response of the film sensor was obtained with pencil lead breakage tests to choose the appropriate band of operation. The specimen considered for the experiments were chosen to characterize the differences in the operation of the failure mechanisms through AE parametric analysis. The results of the investigations can be characterized using AE parameter indicating that a PVDF film sensor was effective as an AE sensor used in structural health monitoring on-line.
Resumo:
Equations proposed in previous work on the non-linear motion of a string show a basic disagreement, which is here traced to an assumption about the longitudinal displacement u. It is shown that it is neither necessary nor justifiable to assume that u is zero; and also that the velocity of propagation of u disturbances in a string is different from that in an infinite medium, although this difference is usually negligible. After formulating the exact equations of motion for the string, a systematic procedure is described for obtaining approximations to these equations to any order, making only the assumption that the strain in the material of the string is small. The lowest order equations in this scheme are non-linear, and are used to describe the response of a string near resonance. Finally, it is shown that in the absence of damping, planar motion of a string is always unstable at sufficiently high amplitudes, the critical amplitude falling to zero at the natural frequency and its subharmonics. The effect of slight damping on this instability is also discussed.
Resumo:
The natural frequencies of symmetrical double cantilever bridges are studied. Determinantal frequency equations are derived for the symmetric and the antisymmetric modes of vibration. They are solved numerically on a computer by the bisection method for the frequency parameter. The values of the frequency parameter for the first four modes are presented. Typical mode shapes are also presented.
Resumo:
It is well known that the analysis of vibration of orthogonally stiffened rectangular plates and grillages may be simplified by replacing the actual structure by an orthotropic plate. This needs a suitable determination of the four elastic rigidity constants Dx, Dy, Dxy, D1 and the mass {Mathematical expression} of the orthotropic plate. A method is developed here for determining these parameters in terms of the sectional properties of the original plate-stiffener combination or the system of interconnected beams. Results of experimental work conducted on aluminium plates agree well with the results of the theory developed here.
Resumo:
The long-wave lattice dynamics of rutile has been studied using a rigid ion model. The vibration frequencies for the zero wavevector have been calculated using the expressions for the frequencies of the normal modes derived group theoretically. The observed Raman and infrared frequencies have been explained.
Resumo:
This paper presents a unified exact analysis for the statics and dynamics of a class of thick laminates. A three-dimensional, linear, small deformation theory of elasticity solution is developed for the bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates. All the nine elastic constants of orthotropy are taken into account. The solution is formally exact and leads to simple infinite series for stresses and displacements in flexure, forced vibration and "beam-column" type problems and to closed form characteristic equations for free vibration and buckling problems. For free vibration of plates, the present analysis yields a triply infinite spectrum of frequencies instead of only one doubly infinite spectrum by thin plate theory or three doubly infinite spectra by Reissner-Mindlin type analyses. Some numerical results are presented for plates and laminates. Comparison of results from thin plate, Reissner and Mindlin analyses with these yield some important conclusions regarding the validity and effects of the assumptions made in the approximate theories.
Resumo:
An approximate analytical procedure has been given to solve the problem of a vibrating rectangular orthotropic plate, with various combinations of simply supported and clamped boundary conditions. Numerical results have been given for the case of a clamped square plate. Nomenclature 2a, 2b sides of the rectangular plate h plate thickness Eprime x , Eprime y , EPrime, G elastic constants of te orthotropic material D x Eprime x h 3/12 D y Eprime y h 3/12 H xy EPrimeh 3/12+Gh 3/6 D x , D y and H xy are rigidity constants of the orthotropic platergr mass of the plate per unit area ngr Poisson's ratio W deflection of the plate p circular frequency gamma b/a ratio X m , Y characteristic functions of the vibrating beam problem -lambda rgrp 2 a 2 b 2/H xy the frequency parameter.
Resumo:
A three-dimensional linear, small deformation theory of elasticity solution by the direct method is developed for the free vibration of simply-supported, homogeneous, isotropic, thick rectangular plates. The solution is exact and involves determining a triply infinite sequence of eigenvalues from a doubly infinite set of closed form transcendental equations. As no restrictions are placed on the thickness variation of stresses or displacements, this formulation yields a triply infinite spectrum of frequencies, instead of only one doubly infinite spectrum by thin plate theory and three doubly infinite spectra by Mindlin's thick plate theory. Further, the present analysis yields symmetric thickness modes which neither of the approximate theories can identify. Some numerical results from the two approximate theories are compared with those from the present solution and some important conclusions regarding the effect of the assumptions made in the approximate theories are drawn. The thickness variations of stresses and displacements are also discussed. The analysis is readily extended for laminated plates of isotropic materials. Numerical results are also given for three-ply laminates, and are used to assess the accuracy of thin plate theory predictions for laminates. Extension to general lateral surface conditions and forced vibrations is indicated.
Resumo:
A detailed investigation of the natural frequencies and mode shapes of simply supported symmetric trapezoidal plates is undertaken in this paper. For numerical calculations, the relationship that exists between the eigenvalue problem of a polygonal simply supported plate and the eigenvalue problem of polygonal membrane of the same shape is utilized with advantage. The deflection surface is expressed in terms of a Fourier sine series in transformed coordinates and the Galerkin method is used. Results are presented in the form of tables and graphs. Several features like the crossing of frequency curves and the metamorphosis of some of the nodal patterns are observed. By a suitable interpretation of the modes of those symmetric trapezoidal plates which have the median as the nodal line, the results for some of the modes of unsymmetrical trapezoidal plates are also deduced.
Resumo:
The effect of vibration on heat transfer from a horizontal copper cylinder, 0.344 in. in diameter and 6 in. long, was investigated. The cylinder was placed normal to an air stream and was sinusoidally vibrated in a direction perpendicular to the direction of the air stream. The flow velocity varied from 19 ft/s to 92 ft/s; the double amplitude of vibration from 0.75 cm to 3.2 cm, and the frequency of vibration from 200 to 2800 cycles/min. A transient technique was used to determine the heat transfer coefficients. The experimental data in the absence of vibration is expressed by NNu = 0.226 NRe0.6 in the range 2500 < NRe < 15 000. By imposing vibrational velocities as high as 20 per cent of the flow velocity, no appreciable change in the heat transfer coefficient was observed. An analysis using the resultant of the vibration and the flow velocity explains the observed phenomenon.