956 resultados para Parallel Evolutionary Algorithms
Resumo:
In this paper, parallel Relaxed and Extrapolated algorithms based on the Power method for accelerating the PageRank computation are presented. Different parallel implementations of the Power method and the proposed variants are analyzed using different data distribution strategies. The reported experiments show the behavior and effectiveness of the designed algorithms for realistic test data using either OpenMP, MPI or an hybrid OpenMP/MPI approach to exploit the benefits of shared memory inside the nodes of current SMP supercomputers.
Resumo:
"Grant no. US NSF MCS75-21758."
Resumo:
Includes bibliographies.
Resumo:
Image segmentation is one of the most computationally intensive operations in image processing and computer vision. This is because a large volume of data is involved and many different features have to be extracted from the image data. This thesis is concerned with the investigation of practical issues related to the implementation of several classes of image segmentation algorithms on parallel architectures. The Transputer is used as the basic building block of hardware architectures and Occam is used as the programming language. The segmentation methods chosen for implementation are convolution, for edge-based segmentation; the Split and Merge algorithm for segmenting non-textured regions; and the Granlund method for segmentation of textured images. Three different convolution methods have been implemented. The direct method of convolution, carried out in the spatial domain, uses the array architecture. The other two methods, based on convolution in the frequency domain, require the use of the two-dimensional Fourier transform. Parallel implementations of two different Fast Fourier Transform algorithms have been developed, incorporating original solutions. For the Row-Column method the array architecture has been adopted, and for the Vector-Radix method, the pyramid architecture. The texture segmentation algorithm, for which a system-level design is given, demonstrates a further application of the Vector-Radix Fourier transform. A novel concurrent version of the quad-tree based Split and Merge algorithm has been implemented on the pyramid architecture. The performance of the developed parallel implementations is analysed. Many of the obtained speed-up and efficiency measures show values close to their respective theoretical maxima. Where appropriate comparisons are drawn between different implementations. The thesis concludes with comments on general issues related to the use of the Transputer system as a development tool for image processing applications; and on the issues related to the engineering of concurrent image processing applications.
Resumo:
We present a parallel genetic algorithm for nding matrix multiplication algo-rithms. For 3 x 3 matrices our genetic algorithm successfully discovered algo-rithms requiring 23 multiplications, which are equivalent to the currently best known human-developed algorithms. We also studied the cases with less mul-tiplications and evaluated the suitability of the methods discovered. Although our evolutionary method did not reach the theoretical lower bound it led to an approximate solution for 22 multiplications.
Resumo:
We describe a novel and potentially important tool for candidate subunit vaccine selection through in silico reverse-vaccinology. A set of Bayesian networks able to make individual predictions for specific subcellular locations is implemented in three pipelines with different architectures: a parallel implementation with a confidence level-based decision engine and two serial implementations with a hierarchical decision structure, one initially rooted by prediction between membrane types and another rooted by soluble versus membrane prediction. The parallel pipeline outperformed the serial pipeline, but took twice as long to execute. The soluble-rooted serial pipeline outperformed the membrane-rooted predictor. Assessment using genomic test sets was more equivocal, as many more predictions are made by the parallel pipeline, yet the serial pipeline identifies 22 more of the 74 proteins of known location.
Resumo:
This research is motivated by a practical application observed at a printed circuit board (PCB) manufacturing facility. After assembly, the PCBs (or jobs) are tested in environmental stress screening (ESS) chambers (or batch processing machines) to detect early failures. Several PCBs can be simultaneously tested as long as the total size of all the PCBs in the batch does not violate the chamber capacity. PCBs from different production lines arrive dynamically to a queue in front of a set of identical ESS chambers, where they are grouped into batches for testing. Each line delivers PCBs that vary in size and require different testing (or processing) times. Once a batch is formed, its processing time is the longest processing time among the PCBs in the batch, and its ready time is given by the PCB arriving last to the batch. ESS chambers are expensive and a bottleneck. Consequently, its makespan has to be minimized. ^ A mixed-integer formulation is proposed for the problem under study and compared to a formulation recently published. The proposed formulation is better in terms of the number of decision variables, linear constraints and run time. A procedure to compute the lower bound is proposed. For sparse problems (i.e. when job ready times are dispersed widely), the lower bounds are close to optimum. ^ The problem under study is NP-hard. Consequently, five heuristics, two metaheuristics (i.e. simulated annealing (SA) and greedy randomized adaptive search procedure (GRASP)), and a decomposition approach (i.e. column generation) are proposed—especially to solve problem instances which require prohibitively long run times when a commercial solver is used. Extensive experimental study was conducted to evaluate the different solution approaches based on the solution quality and run time. ^ The decomposition approach improved the lower bounds (or linear relaxation solution) of the mixed-integer formulation. At least one of the proposed heuristic outperforms the Modified Delay heuristic from the literature. For sparse problems, almost all the heuristics report a solution close to optimum. GRASP outperforms SA at a higher computational cost. The proposed approaches are viable to implement as the run time is very short. ^
Resumo:
Large read-only or read-write transactions with a large read set and a small write set constitute an important class of transactions used in such applications as data mining, data warehousing, statistical applications, and report generators. Such transactions are best supported with optimistic concurrency, because locking of large amounts of data for extended periods of time is not an acceptable solution. The abort rate in regular optimistic concurrency algorithms increases exponentially with the size of the transaction. The algorithm proposed in this dissertation solves this problem by using a new transaction scheduling technique that allows a large transaction to commit safely with significantly greater probability that can exceed several orders of magnitude versus regular optimistic concurrency algorithms. A performance simulation study and a formal proof of serializability and external consistency of the proposed algorithm are also presented.^ This dissertation also proposes a new query optimization technique (lazy queries). Lazy Queries is an adaptive query execution scheme which optimizes itself as the query runs. Lazy queries can be used to find an intersection of sub-queries in a very efficient way, which does not require full execution of large sub-queries nor does it require any statistical knowledge about the data.^ An efficient optimistic concurrency control algorithm used in a massively parallel B-tree with variable-length keys is introduced. B-trees with variable-length keys can be effectively used in a variety of database types. In particular, we show how such a B-tree was used in our implementation of a semantic object-oriented DBMS. The concurrency control algorithm uses semantically safe optimistic virtual "locks" that achieve very fine granularity in conflict detection. This algorithm ensures serializability and external consistency by using logical clocks and backward validation of transactional queries. A formal proof of correctness of the proposed algorithm is also presented. ^
Resumo:
Modern High-Performance Computing HPC systems are gradually increasing in size and complexity due to the correspondent demand of larger simulations requiring more complicated tasks and higher accuracy. However, as side effects of the Dennard’s scaling approaching its ultimate power limit, the efficiency of software plays also an important role in increasing the overall performance of a computation. Tools to measure application performance in these increasingly complex environments provide insights into the intricate ways in which software and hardware interact. The monitoring of the power consumption in order to save energy is possible through processors interfaces like Intel Running Average Power Limit RAPL. Given the low level of these interfaces, they are often paired with an application-level tool like Performance Application Programming Interface PAPI. Since several problems in many heterogeneous fields can be represented as a complex linear system, an optimized and scalable linear system solver algorithm can decrease significantly the time spent to compute its resolution. One of the most widely used algorithms deployed for the resolution of large simulation is the Gaussian Elimination, which has its most popular implementation for HPC systems in the Scalable Linear Algebra PACKage ScaLAPACK library. However, another relevant algorithm, which is increasing in popularity in the academic field, is the Inhibition Method. This thesis compares the energy consumption of the Inhibition Method and Gaussian Elimination from ScaLAPACK to profile their execution during the resolution of linear systems above the HPC architecture offered by CINECA. Moreover, it also collates the energy and power values for different ranks, nodes, and sockets configurations. The monitoring tools employed to track the energy consumption of these algorithms are PAPI and RAPL, that will be integrated with the parallel execution of the algorithms managed with the Message Passing Interface MPI.
Biased Random-key Genetic Algorithms For The Winner Determination Problem In Combinatorial Auctions.
Resumo:
Abstract In this paper, we address the problem of picking a subset of bids in a general combinatorial auction so as to maximize the overall profit using the first-price model. This winner determination problem assumes that a single bidding round is held to determine both the winners and prices to be paid. We introduce six variants of biased random-key genetic algorithms for this problem. Three of them use a novel initialization technique that makes use of solutions of intermediate linear programming relaxations of an exact mixed integer-linear programming model as initial chromosomes of the population. An experimental evaluation compares the effectiveness of the proposed algorithms with the standard mixed linear integer programming formulation, a specialized exact algorithm, and the best-performing heuristics proposed for this problem. The proposed algorithms are competitive and offer strong results, mainly for large-scale auctions.
Resumo:
The parallel mutation-selection evolutionary dynamics, in which mutation and replication are independent events, is solved exactly in the case that the Malthusian fitnesses associated to the genomes are described by the random energy model (REM) and by a ferromagnetic version of the REM. The solution method uses the mapping of the evolutionary dynamics into a quantum Ising chain in a transverse field and the Suzuki-Trotter formalism to calculate the transition probabilities between configurations at different times. We find that in the case of the REM landscape the dynamics can exhibit three distinct regimes: pure diffusion or stasis for short times, depending on the fitness of the initial configuration, and a spin-glass regime for large times. The dynamic transition between these dynamical regimes is marked by discontinuities in the mean-fitness as well as in the overlap with the initial reference sequence. The relaxation to equilibrium is described by an inverse time decay. In the ferromagnetic REM, we find in addition to these three regimes, a ferromagnetic regime where the overlap and the mean-fitness are frozen. In this case, the system relaxes to equilibrium in a finite time. The relevance of our results to information processing aspects of evolution is discussed.
Resumo:
The purpose of this paper is to propose a multiobjective optimization approach for solving the manufacturing cell formation problem, explicitly considering the performance of this said manufacturing system. Cells are formed so as to simultaneously minimize three conflicting objectives, namely, the level of the work-in-process, the intercell moves and the total machinery investment. A genetic algorithm performs a search in the design space, in order to approximate to the Pareto optimal set. The values of the objectives for each candidate solution in a population are assigned by running a discrete-event simulation, in which the model is automatically generated according to the number of machines and their distribution among cells implied by a particular solution. The potential of this approach is evaluated via its application to an illustrative example, and a case from the relevant literature. The obtained results are analyzed and reviewed. Therefore, it is concluded that this approach is capable of generating a set of alternative manufacturing cell configurations considering the optimization of multiple performance measures, greatly improving the decision making process involved in planning and designing cellular systems. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this paper a computational implementation of an evolutionary algorithm (EA) is shown in order to tackle the problem of reconfiguring radial distribution systems. The developed module considers power quality indices such as long duration interruptions and customer process disruptions due to voltage sags, by using the Monte Carlo simulation method. Power quality costs are modeled into the mathematical problem formulation, which are added to the cost of network losses. As for the EA codification proposed, a decimal representation is used. The EA operators, namely selection, recombination and mutation, which are considered for the reconfiguration algorithm, are herein analyzed. A number of selection procedures are analyzed, namely tournament, elitism and a mixed technique using both elitism and tournament. The recombination operator was developed by considering a chromosome structure representation that maps the network branches and system radiality, and another structure that takes into account the network topology and feasibility of network operation to exchange genetic material. The topologies regarding the initial population are randomly produced so as radial configurations are produced through the Prim and Kruskal algorithms that rapidly build minimum spanning trees. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
When building genetic maps, it is necessary to choose from several marker ordering algorithms and criteria, and the choice is not always simple. In this study, we evaluate the efficiency of algorithms try (TRY), seriation (SER), rapid chain delineation (RCD), recombination counting and ordering (RECORD) and unidirectional growth (UG), as well as the criteria PARF (product of adjacent recombination fractions), SARF (sum of adjacent recombination fractions), SALOD (sum of adjacent LOD scores) and LHMC (likelihood through hidden Markov chains), used with the RIPPLE algorithm for error verification, in the construction of genetic linkage maps. A linkage map of a hypothetical diploid and monoecious plant species was simulated containing one linkage group and 21 markers with fixed distance of 3 cM between them. In all, 700 F(2) populations were randomly simulated with and 400 individuals with different combinations of dominant and co-dominant markers, as well as 10 and 20% of missing data. The simulations showed that, in the presence of co-dominant markers only, any combination of algorithm and criteria may be used, even for a reduced population size. In the case of a smaller proportion of dominant markers, any of the algorithms and criteria (except SALOD) investigated may be used. In the presence of high proportions of dominant markers and smaller samples (around 100), the probability of repulsion linkage increases between them and, in this case, use of the algorithms TRY and SER associated to RIPPLE with criterion LHMC would provide better results. Heredity (2009) 103, 494-502; doi:10.1038/hdy.2009.96; published online 29 July 2009