1000 resultados para Parabolic potential
Resumo:
Curriculum documents for mathematics emphasise the importance of promoting depth of knowledge rather than shallow coverage of the curriculum. In this paper, we report on a study that explored the analysis of junior secondary mathematics textbooks to assess their potential to assist in teaching and learning aimed at building and applying deep mathematical knowledge. The method of analysis involved the establishment of a set of specific curriculum goals and associated indicators, based on research into the teaching and learning of a particular field within the mathematics curriculum, namely proportion and proportional reasoning. Topic selection was due to its pervasive nature throughout the school mathematics curriculum at this level. As a result of this study, it was found that the five textbook series examined provided limited support for the development of multiplicative structures required for proportional reasoning, and hence would not serve well the development of deep learning of mathematics. The study demonstrated a method that could be applied to the analysis of junior secondary mathematics in many parts of the world.
Resumo:
The reason why a sustained high concentration of insulin induces laminitis in horses remains unclear. Cell proliferation occurs in the lamellae during insulin-induced laminitis and in other species high concentrations of insulin can activate receptors for the powerful cell mitogen, insulin-like growth factor (IGF)-1. The first aim of this study was to determine if IGF-1 receptors (IGF-1R) are activated in the hoof during insulin-induced laminitis. Gene expression for IGF-1R and the insulin receptor (InsR) was measured using qRT-PCR, in lamellar tissue from control horses and from horses undergoing a prolonged euglycaemic, hyperinsulinaemic clamp (p-EHC), during the mid-developmental (24 h) and acute (46 h) phases of insulin-induced laminitis. Gene expression for both receptors was decreased 13–32-fold (P < 0.05) at both time-points in the insulin-treated horses. A second aim was to determine if the down-regulation of the receptor genes could be accounted for by an increase in circulating IGF-1. Serum IGF-1 was measured at 0, 10, 25 and 46 h post-treatment in horses given a p-EHC for approximately 46 h, and in matched controls administered a balanced, electrolyte solution. There was no increase in serum IGF-1 concentrations during the p-EHC, consistent with down-regulation of both receptors by insulin. Stimulation of the IGF-1R by insulin may lead to inappropriate lamellar epidermal cell proliferation and lamellar weakening, a potential mechanism for hyperinsulinaemic laminitis. Targeting this receptor may provide insights into the pathogenesis or identify a novel therapy for hyperinsulinaemic laminitis.
Resumo:
Background: Xanthine oxidase (XO) is a complex molybdeno-flavoprotein occurring with high activity in the milk fat globule membrane (MFGM) in all mammalian milk and is involved in the final stage of degradation of purine nucleotides. It catalyzes the sequential oxidation of hypoxanthine to xanthine and uric acid, accompanied by production of hydrogen peroxide and superoxide anion. Human saliva has been extensively described for its composition of proteins, electrolytes, cortisol, melatonin and some metabolites such as amino acids, but little is known about nucleotide metabolites. Method: Saliva was collected with swabs from babies; at full-term 1-4 days, 6-weeks, 6-months and 12-months. Unstimulated fasting (morning) saliva samples were collected directly from 77 adults. Breast milk was collected from 24 new mothers. Saliva was extracted from swabs and ultra-filtered. Nucleotide metabolites were analyzed by RP-HPLC with UV-photodiode array and ESI-MS/MS. XO activity was measured as peroxide production from hypoxanthine. Bacterial inhibition over time was assessed using CFU/mL or OD. Results: Median concentrations (μmol/L) of salivary nucleobases and nucleosides for neonates/6-weeks/6-months/12-months/adult respectively were: uracil 5.3/0.8/1.4/0.7/0.8, hypoxanthine 27/7.0/1.1/0.8/2.0, xanthine 19/7.0/2.0/2.0/2.0, adenosine 12/7.0/0.9/0.8/0.1, inosine 11/5.0/0.3/0.4/0.2, guanosine 7.0/6.0/0.5/0.4/0.1, uridine 12/0.8/0.3/0.9/0.4. Deoxynucleosides and dihydropyrimidines concentrations were essentially negligible. XO activity (Vmax:mean ± SD) in breast milk was 8.9 ± 6.2 μmol/min/L and endogenous peroxide was 27 ± 12 μmol/L; mixing breast milk with neonate saliva generated ~40 μmol/L peroxide,which inhibited Staphylococcus aureus. Conclusions: Salivary metabolites, particularly xanthine/hypoxanthine, are high in neonates, transitioning to low adult levels between 6-weeks to 6-months (p < 0.001). Peroxide occurs in breast milk and is boosted during suckling as an antibacterial system.
Resumo:
In this presentation, renowned arts practitioner, Sean Mee, and Nigel Lavender, Executive Director of the Queensland Music Festival, talk about how community arts practice can be used to build cultural captial in communities, using examples such large-scale musicals such as The Road We're ON (Charleville) and Behind the Cand (Bowen), Mee and Lavender highlight the importance of community-driven narrative and particiaption.
Resumo:
On 25 January 2013, the Council of Australian Governments (COAG) released a Regulatory Impact Assessment (RIA) for consultation on ways to reduce regulatory duplication between the proposed Commonwealth governance and reporting standards and existing state and territory requirements.
Resumo:
BACKGROUND: Despite the fact that traditional Chinese medicine (TCM) has been developed and used to treat acute and urgent illness for many thousands of years. TCM has been widely perceived in western societies that TCM may only be effective to treat chronic diseases. The aim of this article is to provide some scientific evidence regarding the application of TCM in emergency medicine and its future potential. METHODS: Multiple databases (PubMed, ProQuest, Academic Search Elite and Science Direct) were searched using the terms: Traditional Chinese Medicine/ Chinese Medicine, Emergency Medicine, China. In addition, three leading TCM Journals in China were searched via Oriprobe Information Services for relevant articles (published from 1990—2012). Particular attention was paid to those articles that are related to TCM treatments or combined medicine in dealing with intensive and critical care. RESULTS: TCM is a systematic traditional macro medicine. The clinical practice of TCM is guided by the TCM theoretical framework – a methodology founded thousands of years ago. As the methodologies between TCM and Biomedicine are significantly different, it provides an opportunity to combine two medicines, in order to achieve clinical efficacy. Nowadays, combined medicine has become a common clinical model particular in TCM hospitals in China. CONCLUSIONS: It is evident that TCM can provide some assistance in emergency although to combine them in practice is stillits infant form and is mainly at TCM hospitals in China. The future effort could be put into TCM research, both in laboratories and clinics, with high quality designs, so that TCM could be better understood and then applied in emergency medicine.
Resumo:
One important challenge for regenerative medicine is to produce a clinically relevant number of cells with consistent tissue-forming potential. Isolation and expansion of cells from skeletal tissues results in a heterogeneous population of cells with variable regenerative potential. A more consistent tissue formation could be achieved by identification and selection of potent progenitors based on cell surface molecules. In this study, we assessed the expression of stage-specific embryonic antigen-4 (SSEA-4), a classic marker of undifferentiated stem cells, and other surface markers in human articular chondrocytes (hACs), osteoblasts, and bone marrow-derived mesenchymal stromal cells (bmMSCs) and characterized their differentiation potential. Further, we sorted SSEA-4-expressing hACs and followed their potential to proliferate and to form cartilage in vitro. Cells isolated from cartilage and bone exhibited remarkably heterogeneous SSEA-4 expression profiles in expansion cultures. SSEA-4 expression levels increased up to approximately 5 population doublings, but decreased following further expansion and differentiation cultures; levels were not related to the proliferation state of the cells. Although SSEA-4-sorted chondrocytes showed a slightly better chondrogenic potential than their SSEA-4-negative counterparts, differences were insufficient to establish a link between SSEA-4 expression and chondrogenic potential. SSEA-4 levels in bmMSCs also did not correlate to the cells' chondrogenic and osteogenic potential in vitro. SSEA-4 is clearly expressed by subpopulations of proliferating somatic cells with a MSC-like phenotype. However, the predictive value of SSEA-4 as a specific marker of superior differentiation capacity in progenitor cell populations from adult human tissue and even its usefulness as a stem cell marker appears questionable.
Resumo:
This thesis is about the use of different cells for bone tissue engineering. The cells were used in combination with a novel biomaterial in a large tibial bone defects in a sheep model. Furthermore this study developed a novel cell delivery procedure for bone tissue engineering. This novel procedure of cell delivery could overcome the current problems of cell-based tissue engineering and serve as a baseline for the translation of novel concepts into clinical application.
Resumo:
Vaccination campaigns to prevent the spread of epidemics are successful only if the targeted populations subscribe to the recommendations of health authorities. However, because compulsory vaccination is hardly conceivable in modern democracies, governments need to convince their populations through efficient and persuasive information campaigns. In the context of the swine-origin A (H1N1) 2009 pandemic, we use an interactive study among the general public in the South of France, with 175 participants, to explore what type of information can induce change in vaccination intentions at both aggregate and individual levels. We find that individual attitudes to vaccination are based on rational appraisal of the situation, and that it is information of a purely scientific nature that has the only significant positive effect on intention to vaccinate.
Resumo:
Sol-gel synthesis in varied gravity is only a relatively new topic in the literature and further investigation is required to explore its full potential as a method to synthesise novel materials. Although trialled for systems such as silica, the specific application of varied gravity synthesis to other sol-gel systems such as titanium has not previously been undertaken. Current literature methods for the synthesis of sol-gel material in reduced gravity could not be applied to titanium sol-gel processing, thus a new strategy had to be developed in this study. To successfully conduct experiments in varied gravity a refined titanium sol-gel chemical precursor had to be developed which allowed the single solution precursor to remain un-reactive at temperatures up to 50oC and only begin to react when exposed to a pressure decrease from a vacuum. Due to the new nature of this precursor, a thorough characterisation of the reaction precursors was subsequently undertaken with the use of techniques such as Nuclear Magnetic Resonance, Infra-red and UV-Vis spectroscopy in order to achieve sufficient understanding of precursor chemistry and kinetic stability. This understanding was then used to propose gelation reaction mechanisms under varied gravity conditions. Two unique reactor systems were designed and built with the specific purpose to allow the effects of varied gravity (high, normal, reduced) during synthesis of titanium sol-gels to be studied. The first system was a centrifuge capable of providing high gravity environments of up to 70 g’s for extended periods, whilst applying a 100 mbar vacuum and a temperature of 40-50oC to the reaction chambers. The second system to be used in the QUT Microgravity Drop Tower Facility was also required to provide the same thermal and vacuum conditions used in the centrifuge, but had to operate autonomously during free fall. Through the use of post synthesis characterisation techniques such as Raman Spectroscopy, X-Ray diffraction (XRD) and N2 adsorption, it was found that increased gravity levels during synthesis, had the greatest effect on the final products. Samples produced in reduced and normal gravity appeared to form amorphous gels containing very small particles with moderate surface areas. Whereas crystalline anatase (TiO2), was found to form in samples synthesised above 5 g with significant increases in crystallinity, particle size and surface area observed when samples were produced at gravity levels up to 70 g. It is proposed that for samples produced in higher gravity, an increased concentration gradient of water is forms at the bottom of the reacting film due to forced convection. The particles formed in higher gravity diffuse downward towards this excess of water, which favours the condensation reaction of remaining sol gel precursors with the particles promoting increased particle growth. Due to the removal of downward convection in reduced gravity, particle growth due to condensation reaction processes are physically hindered hydrolysis reactions favoured instead. Another significant finding from this work was that anatase could be produced at relatively low temperatures of 40-50oC instead of the conventional method of calcination above 450oC solely through sol-gel synthesis at higher gravity levels. It is hoped that the outcomes of this research will lead to an increased understanding of the effects of gravity on chemical synthesis of titanium sol-gel, potentially leading to the development of improved products suitable for diverse applications such as semiconductor or catalyst materials as well as significantly reducing production and energy costs through manufacturing these materials at significantly lower temperatures.
Resumo:
Work design operates as the system of arrangements and procedures for organizing work to achieve organizational goals. These systems are commonly established in periods of environmental and organizational stability and formulated to achieve efficiencies in resources, employee and team configuration. However, organizations charged with responding to disasters need to be prepared to respond to unexpected events on a large scale, and disaster response planning needs to accommodate a broad range of possible disasters. When the disaster state occurs, enactment of the specific organizational response is devolved to group or individual level managers. While this enactment presents a range of risks, it also provides a potential avenue for innovation. Employees ultimately are the foundation of change and innovation, as it is people who develop, respond, change and implement new ideas. This study analyzes motivational characteristics of work design at an Australian humanitarian organization encompassing normal operations and periods of disaster activation. The study will identify the paradox of dual work designs and the implications for organizational innovation.
Resumo:
The recent criminal conviction 1 of Queensland teacher, Merin Nielsen, for aiding the suicide of an elderly acquaintance, Frank Ward, raises some timely issues, particularly for succession lawyers. This is the second time in recent years that there has been a conviction of a person who participated in a scheme
Resumo:
Gelatin-methacrylamide (gelMA) hydrogels are shown to support chondrocyte viability and differentiation and give wide ranging mechanical properties depending on several cross-linking parameters. Polymer concentration, UV exposure time, and thermal gelation prior to UV exposure allow for control over hydrogel stiffness and swelling properties. GelMA solutions have a low viscosity at 37 °C, which is incompatible with most biofabrication approaches. However, incorporation of hyaluronic acid (HA) and/or co-deposition with thermoplastics allows gelMA to be used in biofabrication processes. These attributes may allow engineered constructs to match the natural functional variations in cartilage mechanical and geometrical properties.
Resumo:
Whilst alcohol is a common feature of many social gatherings, there are numerous immediate and long-term health and social harms associated with its abuse. Alcohol consumption is the world’s third largest risk factor for disease and disability with almost 4% of all deaths worldwide attributed to alcohol. Not surprisingly, alcohol use and binge drinking by young people is of particular concern with Australian data reporting that 39% of young people (18-19yrs) admitted drinking at least weekly and 32% drank to levels that put them at risk of alcohol-related harm. The growing market penetration and connectivity of smartphones may be an opportunities for innovation in promoting health-related self-management of substance use. However, little is known about how best to harness and optimise this technology for health-related intervention and behaviour change. This paper explores the utility and interface of smartphone technology as a health intervention tool to monitor and moderate alcohol use. A review of the psychological health applications of this technology will be presented along with the findings of a series of focus groups, surveys and behavioural field trials of several drink-monitoring applications. Qualitative and quantitative data will be presented on the perceptions, preferences and utility of the design, usability and functionality of smartphone apps to monitoring and moderate alcohol use. How these findings have shaped the development and evolution of the OnTrack app will be specifically discussed, along with future directions and applications of this technology in health intervention, prevention and promotion.