971 resultados para POLYPHENYLENE SULFIDE
Resumo:
Sulfide mineral major and trace element analyses were performed on more than 50 polished slabs representing mineralization from three seafloor hydrothermal massive sulfide deposits. Samples from the Bent Hill and ODP Mound massive sulfide deposits, both on the Juan de Fuca Ridge, can be contrasted with samples from the Trans-Atlantic Geotraverse (TAG) hydrothermal mound on the Mid-Atlantic Ridge. The massive sulfide at Bent Hill is predominantly pyrite and pyrrhotite, with increasing amounts of copper-bearing sulfide minerals at the base of the massive sulfide body and through the stockwork to an interval 200 m below seafloor that hosts high copper mineralization (Deep Copper Zone). ODP Mound contains much more abundant sphalerite and copper-bearing sulfides as compared to either Bent Hill or TAG, which are predominantly pyrite with much less abundant chalcopyrite. Copper-bearing sulfides from the Deep Copper Zone beneath Bent Hill and the lowest sampled interval of ODP Mound are petrographically and chemically similar, but distinct from copper-bearing minerals higher in either sequence.
Resumo:
Sulfidic muds of cold seeps on the Nile Deep Sea Fan are populated by different types of mat-forming sulfide-oxidizing bacteria. The predominant sulfide oxidizers of three different mats were identified by microscopic and phylogenetic analyses as (i) Arcobacter species producing cotton-ball-like sulfur precipitates, (ii) large filamentous sulfur bacteria including Beggiatoa species, or (iii) single, spherical cells resembling Thiomargarita species. High resolution in situ microprofiles revealed different geochemical settings selecting for different mat types. Arcobacter mats occurred where oxygen and sulfide overlapped at the bottom water interface. Filamentous sulfide oxidizers were associated with non-overlapping, steep gradients of oxygen and sulfide. A dense population of Thiomargarita was favored by temporarily changing supplies of oxygen and sulfide. These results indicate that the decisive factors in selecting for different mat-forming bacteria within one deep-sea province are spatial or temporal variations in energy supply. Furthermore, the occurrence of Arcobacter spp.-related 16S rRNA genes in the sediments below all three types of mats, as well as on top of brine lakes of the Nile Deep Sea Fan, indicates that this group of sulfide oxidizers can switch between different life modes depending on the geobiochemical habitat setting.
Mineralogy and stable isotopic composition of carbonates and sulfide minerals from ODP Leg 164 sites
Resumo:
During Ocean Drilling Program Leg 164, gas hydrates were recovered in the Blake Ridge where the top of the gas hydrate zone lies at about 200 meters below seafloor (mbsf) and the bottom-simulating reflector (BSR) is located at about 450 mbsf. There is no sedimentological discontinuity crossing the BSR. The BSR is disrupted by the salt piercement of the Cape Fear Diapir. The authigenic carbonates (dolomite and siderite) are always present in small amounts (a few weight percent) in the sediments; they are also concentrated in millimeter- to centimeter-sized nodules and layers composed of dolomite above the top of the gas hydrate reservoir, and of siderite below the BSR. In the Blake Ridge, the dolomite/siderite boundary is located near 140 mbsf. The distribution with depth of the d18O values of dolomite and siderite shows a sharp decrease from high values (maximum 7.5 per mil) in the topmost 50 m, to very low values (minimum -2.7 per mil) at 140 mbsf, and at greater depth increase to positive values within the range of 1.8 per mil to 5.0 per mil. The d13C distribution is marked by the rapid increase with greater depth from low values (-31.3 per mil to -11.4 per mil) near 50 mbsf to positive values at 110 mbsf, which remain in the range of 1.7 to 5.4 down to 700 mbsf. Diagenetic carbonates were precipitated in pore waters in which d18O and d13C values were highly modified by strong fractionation effects, both in the water and in the CO2-CH4 systems associated with the formation and dissociation of gas hydrates.
Resumo:
The Dvurechenskii mud volcano (DMV), located in permanently anoxic waters at 2060 m depth (Sorokin Trough, Black Sea), was visited during the M72/2 cruise with the RV Meteor to investigate the methane and sulfide release from mud volcanoes into the Black Sea hydrosphere. We studied benthic fluxes of methane and sulfide, and the factors controlling transport, consumption and production of both compounds within the sediment. The pie shaped mud volcano showed temperature anomalies as well as solute and gas fluxes indicating high fluid flow at a small elevation north of the geographical center. The anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) was excluded from this zone due to fluid-flow induced sulfate limitation and a fresh mud flow and consequently methane escaped into the water column with a rate of 0.46 mol/m**2/d. In the outer center of the mud volcano fluid flow and total methane flux were decreased, correlating with an increase in sulfate penetration into the sediment, and with higher SR and AOM rates. Here between 50-70% of the methane flux (0.07-0.1 mol/m**2/d) was consumed within the upper 10 cm of the sediment. Also at the edge of the mud volcano fluid flow and rates of methane and sulfate turnover were substantial. The overall amount of dissolved methane released from the mud volcano into the water column was significant with a discharge of 1.4x10**7 mol/yr. The DMV maintains also high areal rates of methane-fueled sulfide production of on average 0.05 mol/m**2/d. However, we concluded that sulfide and methane emission into the hydrosphere from deep water mud volcanoes does not significantly contribute to the sulfide and methane inventory of the Black Sea.
Resumo:
This paper presents sulfide mineral occurrence, abundance, and composition in samples from hydrothermally altered peridotite and gabbro recovered during Ocean Drilling Program (ODP) Leg 209 from south of the 15°20'N Fracture Zone on the Mid-Atlantic Ridge at Site 1268. Most of the sulfide minerals occur in veins and halos around veins in serpentinized peridotite. The only sulfide phases reported that occur in proximity to gabbro are those associated with a mafic intrusion into serpentinized peridotite. Sulfide mineral species change predictably downsection but are perturbed coincident with a breccia interpreted to be generated by intrusion of a gabbroic magma. The general downhole trend suggests sulfide mineral precipitation in conditions with decreasing sulfur and oxygen fugacity. Sulfide minerals that indicate precipitation at relatively higher sulfur and oxygen fugacity occur in the central core of the intrusion breccia. Sphalerite makes a fleeting appearance in the sulfide mineral assemblage in samples from the lower part of the intrusion breccia. Strongly contrasting pyrite compositions suggest at least two episodes of pyrite precipitation, but there is no clear morphological distinction between phases. Heazelwoodite, tentatively identified in shipboard examinations, could not be confirmed in this study.