666 resultados para POLYIMIDE OLIGOMERS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hantaviruses, members of the genus Hantavirus in the Bunyaviridae family, are enveloped single-stranded RNA viruses with tri-segmented genome of negative polarity. In humans, hantaviruses cause two diseases, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS), which vary in severity depending on the causative agent. Each hantavirus is carried by a specific rodent host and is transmitted to humans through excreta of infected rodents. The genome of hantaviruses encodes four structural proteins: the nucleocapsid protein (N), the glycoproteins (Gn and Gc), and the polymerase (L) and also the nonstructural protein (NSs). This thesis deals with the functional characterization of hantavirus N protein with regard to its structure. Structural studies of the N protein have progressed slowly and the crystal structure of the whole protein is still not available, therefore biochemical assays coupled with bioinformatical modeling proved essential for studying N protein structure and functions. Presumably, during RNA encapsidation, the N protein first forms intermediate trimers and then oligomers. First, we investigated the role of N-terminal domain in the N protein oligomerization. The results suggested that the N-terminal region of the N protein forms a coiled-coil, in which two antiparallel alpha helices interact via their hydrophobic seams. Hydrophobic residues L4, I11, L18, L25 and V32 in the first helix and L44, V51, L58 and L65 in the second helix were crucial for stabilizing the structure. The results were consistent with the head-to-head, tail-to-tail model for hantavirus N protein trimerization. We demonstrated that an intact coiled-coil structure of the N terminus is crucial for the oligomerization capacity of the N protein. We also added new details to the head-to-head, tail-to-tail model of trimerization by suggesting that the initial step is based on interaction(s) between intact intra-molecular coiled-coils of the monomers. We further analyzed the importance of charged aa residues located within the coiled-coil for the N protein oligomerization. To predict the interacting surfaces of the monomers we used an upgraded in silico model of the coiled-coil domain that was docked into a trimer. Next the predicted target residues were mutated. The results obtained using the mammalian two-hybrid assay suggested that conserved charged aa residues within the coiled-coil make a substantial contribution to the N protein oligomerization. This contribution probably involves the formation of interacting surfaces of the N monomers and also stabilization of the coiled-coil via intramolecular ionic bridging. We proposed that the tips of the coiled-coils are the first to come into direct contact and thus initiate tight packing of the three monomers into a compact structure. This was in agreement with the previous results showing that an increase in ionic strength abolished the interaction between N protein molecules. We also showed that residues having the strongest effect on the N protein oligomerization are not scattered randomly throughout the coiled-coil 3D model structure, but form clusters. Next we found evidence for the hantaviral N protein interaction with the cytoplasmic tail of the glycoprotein Gn. In order to study this interaction we used the GST pull-down assay in combination with mutagenesis technique. The results demonstrated that intact, properly folded zinc fingers of the Gn protein cytoplasmic tail as well as the middle domain of the N protein (that includes aa residues 80 248 and supposedly carries the RNA-binding domain) are essential for the interaction. Since hantaviruses do not have a matrix protein that mediates the packaging of the viral RNA in other negatve stranded viruses (NSRV), hantaviral RNPs should be involved in a direct interaction with the intraviral domains of the envelope-embedded glycoproteins. By showing the N-Gn interaction we provided the evidence for one of the crucial steps in the virus replication at which RNPs are directed to the site of the virus assembly. Finally we started analysis of the N protein RNA-binding region, which is supposedly located in the middle domain of the N protein molecule. We developed a model for the initial step of RNA-binding by the hantaviral N protein. We hypothesized that the hantaviral N protein possesses two secondary structure elements that initiate the RNA encapsidation. The results suggest that amino acid residues (172-176) presumably act as a hook to catch vRNA and that the positively charged interaction surface (aa residues 144-160) enhances the initial N-RNA interacation. In conclusion, we elucidated new functions of hantavirus N protein. Using in silico modeling we predicted the domain structure of the protein and using experimental techniques showed that each domain is responsible for executing certain function(s). We showed that intact N terminal coiled-coil domain is crucial for oligomerization and charged residues located on its surface form a interaction surface for the N monomers. The middle domain is essential for interaction with the cytoplasmic tail of the Gn protein and RNA binding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cholesterol is an essential component in the membranes of most eukaryotic cells, in which it mediates many functions including membrane fluidity, permeability and the formation of ordered membrane domains. In this work a fluorescent and a non-fluorescent cholesterol analog were characterized as tools to study cholesterol. Next, these analogs were used to study two specific cell biological processes that involve cholesterol, i.e. the structure and function of ordered membrane domains/rafts and intracellular cholesterol transport. The most common method for studying ordered membrane domains is by disrupting them by cholesterol depletion. Because cholesterol depletion affects many cellular functions besides those mediated by membrane domains, this procedure is highly unspecific. The cellular exchange of cholesterol by desmosterol as a tool to study ordered membrane domains was characterized. It turned out that the ability of desmosterol to form and stabilize membrane domains in vitro was weaker compared to cholesterol. This result was reinforced by atomistic scale simulations that indicated that desmosterol has a lower ordering effect on phospholipid acyl chains. Three procedures were established for exchanging cellular cholesterol by desmosterol. In cells in which desmosterol was the main sterol, insulin signaling was attenuated. The results suggest that this was caused by desmosterol destabilizing membrane rafts. Contrary to its effect on ordered membrane domains it was found that replacing cholesterol by desmosterol does not change cell growth/viability, subcellular sterol distribution, Golgi integrity, secretory pathway, phospholipid composition and membrane fluidity. Together these results suggest that exchanging cellular cholesterol by desmosterol provides a selective tool for perturbing rafts. Next, the importance of cholesterol for the structure and function of caveolae was analyzed by exchanging the cellular cholesterol by desmosterol. The sterol exchange reduced the stability of caveolae as determined by detergent resistance of caveolin-1 and heat resistance of caveolin-1 oligomers. Also the sterol exchange led to aberrations in the caveolar structure; the morphology of caveolae was altered and there was a larger variation in the amount of caveolin-1 molecules per caveola. These results demonstrate that cholesterol is important for caveolar stability and structural homogeneity. In the second part of this work a fluorescent cholesterol analog was characterized as a tool to study cholesterol transport. Tight control of the intracellular cholesterol distribution is essential for many cellular processes. An important mechanism by which cells regulate their membrane cholesterol content is by cholesterol traffic, mostly from the plasma membrane to lipid droplets. The fluorescent sterol probe BODIPY-cholesterol was characterized as a tool to analyze cholesterol transport between the plasma membrane, the endoplasmic reticulum (ER) and lipid droplets. The behavior of BODIPY-cholesterol was compared to that of natural sterols, using both biochemical and live-cell microcopy assays. The results show that the transport kinetics of BODIPY-cholesterol between the plasma membrane, the ER and lipid droplets is similar to that of unesterified cholesterol. Next, BODIPY-cholesterol was utilized to analyze the importance of oxysterol binding protein related proteins (ORPs) for cholesterol transport between the plasma membrane, the ER, and lipid droplets in mammalian cells. By overexpressing all human ORPs it turned out that especially ORP1S and ORP2 enhanced sterol transport from the plasma membrane to lipid droplets. Our results suggest that the increased sterol transport takes place between the plasma membrane and ER and not between the ER and lipid droplets. Simultaneous knockdown of ORP1S and ORP2 resulted in a moderate but significant inhibition of sterol traffic from the plasma membrane to ER and lipid droplets, suggesting a physiological role for these ORPs in this process. The two phenylalanines in an acidic tract (FFAT) motif in ORPs, which mediates interaction with vesicle associated membrane protein associated proteins (VAPs) in the ER, was not necessary for mediating sterol transport. However, VAP silencing slowed down sterol transport, most likely by destabilizing ORPs containing a FFAT motif.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amyloid beta (A beta) is the major etiological factor implicated in Alzheimer's disease (AD). A beta(42) self-assembles to form oligomers and fibrils via multiple aggregation process. The recent studies aimed to decrease A beta levels or prevention of A beta aggregation which are the major targets for therapeutic intervention. Natural products as alternatives for AD drug discovery are a current trend. We evidenced that Caesalpinia crista leaf aqueous extract has anti-amyloidogenic potential. The studies on pharmacological properties of C. crista are very limited. Our study focused on ability of C. crista leaf aqueous extract on the prevention of (i) the formation of oligomers and aggregates from monomers (Phase I: A beta(42) + extract co-incubation); (ii) the formation of fibrils from oligomers (Phase II: extract added after oligomers formation); and (iii) dis-aggregation of pre-formedfibrils (Phase III: aqueous extract added to matured fibrils and incubated for 9 days). The aggregation kinetics was monitored using thioflavin-T assay and transmission electron microscopy (TEM). The results showed that C. crista aqueous extract could able to inhibit the A beta(42) aggregation from monomers and oligomers and also able todis-aggregate the pre-formed fibrils. The study provides an insight on finding new natural products for AD therapeutics. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Symmetrized density-matrix-renormalization-group calculations have been carried out, within Pariser-Parr-Pople Hamiltonian, to explore the nature of the ground and low-lying excited states of long polythiophene oligomers. We have exploited C-2 symmetry and spin parity of the system to obtain excited states of experimental interest, and studied the lowest dipole allowed excited state and lowest dipole forbidden two photon state, for different oligomer sizes. In the long system limit, the dipole allowed excited state always lies below the lowest dipole forbidden two-photon state which implies, by Kasha rule, that polythiophene fluoresces strongly. The lowest triplet state lies below two-photon state as usual in conjugated polymers. We have doped the system with a hole and an electron and obtained the charge excitation gap and the binding energy of the 1(1)B(u)(-) exciton. We have calculated the charge density of the ground, one-photon and two-photon states for the longer system size of 10 thiophene rings to characterize these states. We have studied bond order in these states to get an idea about the equilibrium excited state geometry of the system. We have also studied the charge density distribution of the singly and doubly doped polarons for longer system size, and observe that polythiophenes do not support bipolarons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bowman-Birk inhibitors (BBI) isolated from plant seeds are small proteins active against trypsin and/or chymotrypsin. These inhibitors have been extensively studied in terms of their structure, interactions, function and evolution. Examination of the known three-dimensional structures of BBIs revealed similarities and subtle differences.The hydrophobic core, deduced from surface accessibility and hydrophobicity plots, corresponding to the two tandem structural domains of the double headed BBI are related by an almost exact two-fold, in contrast to the reactive site loops which depart appreciably from the two-fold symmetry. Also, the orientations of inhibitory loops in soybean and peanut inhibitors were different with respect to the rigid core. Based on the structure of Adzuki bean BBI-trypsin complex, models of trypsin and chymotryspin bound to the monomeric soybean BBI (SBI) were constructed. There were minor short contacts between the two enzymes bound to the inhibitor suggesting near independence of binding. Binding studies revealed that the inhibition of one enzyme in the presence of the other is associated with a minor negative cooperativity. In order to assess the functional significance of the reported oligomeric forms of BBI, binding of proteases to the crystallographic and non-crystallographic dimers as found in the crystal structure of peanut inhibitor were examined. It was found that all the active sites in these oligomers cannot simultaneously participate in inhibition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atomic layer deposition (ALD) is a method to deposit thin films from gaseous precursors to the substrate layer-by-layer so that the film thickness can be tailored with atomic layer accuracy. Film tailoring is even further emphasized with selective-area ALD which enables the film growth to be controlled also on the substrate surface. Selective-area ALD allows the decrease of a process steps in preparing thin film devices. This can be of a great technological importance when the ALD films become into wider use in different applications. Selective-area ALD can be achieved by passivation or activation of a surface. In this work ALD growth was prevented by octadecyltrimethoxysilane, octadecyltrichlorosilane and 1-dodecanethiol SAMs, and by PMMA (polymethyl methacrylate) and PVP (poly(vinyl pyrrolidone) polymer films. SAMs were prepared from vapor phase and by microcontact printing, and polymer films were spin coated. Microcontact printing created patterned SAMs at once. The SAMs prepared from vapor phase and the polymer mask layers were patterned by UV lithography or lift-off process so that after preparation of a continuous mask layer selected areas of them were removed. On these areas the ALD film was deposited selectively. SAMs and polymer films prevented the growth in several ALD processes such as iridium, ruthenium, platinum, TiO2 and polyimide so that the ALD films did grow only on areas without SAM or polymer mask layer. PMMA and PVP films also protected the surface against Al2O3 and ZrO2 growth. Activation of the surface for ALD of ruthenium was achieved by preparing a RuOX layer by microcontact printing. At low temperatures the RuCp2-O2 process nucleated only on this oxidative activation layer but not on bare silicon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hantaviruses are one of the five genera of the vector-borne virus family Bunyaviridae. While other members of the family are transmitted via arthropods, hantaviruses are carried and transmitted by rodents and insectivores. Occasional transmission to humans occurs via inhalation of aerosolized rodent excreta. When transmitted to man hantaviruses cause hemorrhagic fever with renal syndrome (HFRS, in Eurasia, mortality ~10%) and hantavirus cardiopulmonary syndrome (HCPS, in the Americas, mortality ~40%). The single-stranded, negative-sense RNA genome of hantaviruses is in segments S, M and L that respectively encode for nucleocapsid (N), glycoproteins Gn and Gc, and RNA-dependent RNA-polymerase (RdRp or L protein). The genome segments, encapsidated by N protein to form ribonucleoprotein (RNP), are enclosed inside a lipid envelope decorated by spikes formed of Gn and Gc. The focus of this study was to understand the mechanisms and interactions through which the virion is formed and maintained. We observed that when extracted from virions both Gn and Gc favor homo- over hetero-oligomerization. The minimal glycoprotein complexes extracted from virion by detergent were observed, by using ultracentrifugation and gel filtration, to be tetrameric Gn and homodimeric Gc. These results led us to suggest a model where tetrameric Gn complexes are interconnected through homodimeric Gc units to form the grid-like surface architecture described for hantaviruses. This model was found to correlate with the three-dimensional (3D) reconstruction of virion surface created using cryo-electron tomography (cryo-ET). The 3D-density map showed the spike complex formed of Gn and Gc to be 10 nm high and to display a four-fold symmetry with dimensions of 15 nm times 15 nm. This unique square-shaped complex on a roughly round virion creates a hitch for the assembly, since a sphere cannot be broken into rectangles. Thus additional interactions are likely required for the virion assembly. In cryo-ET we observed that the RNP makes occasional contacts to the viral membrane, suggesting an interaction between the spike and RNP. We were able to demonstrate this interaction using various techniques, and showed that both Gn and Gc contribute to the interaction. This led us to suggest that in addition to the interactions between Gn and Gc, also the interaction between spike and RNP is required for assembly. We found galectin-3 binding protein (referred to as 90K) to co-purify with the virions and showed an interaction between 90K and the virion. Analysis of plasma samples taken from patients hospitalized for Puumala virus infection showed increased concentrations of 90K in the acute phase and the increased 90K level was found to correlate with several parameters that reflect the severity of acute HFRS. The results of these studies confirmed, but also challenged some of the dogmas on the structure and assembly of hantaviruses. We confirmed that Gn and RNP do interact, as long assumed. On the other hand we demonstrated that the glycoproteins Gn and Gc exist as homo-oligomers or appear in large hetero-oligomeric complexes, rather than form primarily heterodimers as was previously assumed. This work provided new insight into the structure and assembly of hantaviruses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An analysis of the base pair doublet geometries in available crystal structures indicates that the often reported intrinsic curvature of DNA containing oligo-(d(A).d(T)) tracts may also depend on the nature of the flanking sequences. The presence of CA/TG doublet in particular at the 5' end of these tracts is expected to enhance their intrinsic bending property. To test this proposition, three oligonucleotides, d(GAAAAACCCCCC), d(CCCCCCAAAAAG), d(GAAAAATTTTTC), and their complementary sequences were synthesized to study the effect of various flanking sequences, at the 5' and 3' ends of the A-tracts, on the curvature of DNA in solution. An analysis of the polyacrylamide gel electrophoretic mobilities of these sequences under different conditions of salts and temperatures (below their melting points) clearly showed that the oligomer with CA/TG sequence in the center was always more retarded than the oligomer with AC/GT sequence, as well as the oligomer with AT/AT sequence. Hydroxyl radical probing of the sequences with AC/GT and CA/TG doublet junctions gives a similar cutting pattern in the A-tracts, which is quite different from that in the C-tracts, indicating that the oligo(A)-tracts have similar structures in the two oligomers. KMnO4 probing shows that the oligomer with a CA/TG doublet junction forms a kink that is responsible for its inherent curvature and unusual electrophoretic mobility. UV melting shows a reduced thermal stability of the duplex with CA/TG doublet junction, and circular dichroism (CD) studies indicate that a premelting transition occurs in the oligomer with CA/TG doublet step before global melting but not in the oligomer with AC/GT doublet step, which may correspond to thermally induced unbending of the oligomer. These observations indicate that the CA/TG doublet junction at the 5' end of the oligo(A)-tract has a crucial role in modulating the overall curvature in DNA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report in this paper the aggregation properties of amphotericin-B (amp-B) in solution using CD and 1H-NMR techniques. Our results indicate that the preferred structure of amp-B in dimethylsulfoxide is a monomer at low concentrations (10−4M and below) and a stable dimer at higher concentrations (range 5 · 103 M to 10−2M). In a DMSO/ethanol mixture (1:1 (v/v)), the antibiotic is monomeric, irrespective of the concentration within the range studied. We propose a head-to-tail model based on NMR data. An understanding of the head-to-tail dimer, is, we believe important, particularly in view of the recent report wherein it is proposed that the drug inserts into bilayers as head-to-tail oligomers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An analysis of the base pair doublet geometries in available crystal structures indicates that the often reported intrinsic curvature of DNA containing oligo-(d(A).d(T)) tracts may also depend on the nature of the flanking sequences. The presence of CA/TG doublet in particular at the 5' end of these tracts is expected to enhance their intrinsic bending property. To test this proposition, three oligonucleotides, d(GAAAAACCCCCC), d(CCCCCCAAAAAG), d(GAAAAATTTTTC), and their complementary sequences were synthesized to study the effect of various flanking sequences, at the 5' and 3' ends of the A-tracts, on the curvature of DNA in solution. An analysis of the polyacrylamide gel electrophoretic mobilities of these sequences under different conditions of salts and temperatures (below their melting points) clearly showed that the oligomer with CA/TG sequence in the center was always more retarded than the oligomer with AC/GT sequence, as well as the oligomer with AT/AT sequence. Hydroxyl radical probing of the sequences with AC/GT and CA/TG doublet junctions gives a similar cutting pattern in the A-tracts, which is quite different from that in the C-tracts, indicating that the oligo(A)-tracts have similar structures in the two oligomers. KMnO4 probing shows that the oligomer with a CA/TG doublet junction forms a kink that is responsible for its inherent curvature and unusual electrophoretic mobility. UV melting shows a reduced thermal stability of the duplex with CA/TG doublet junction, and circular dichroism (CD) studies indicate that a premelting transition occurs in the oligomer with CA/TG doublet step before global melting but not in the oligomer with AC/GT doublet step, which may correspond to thermally induced unbending of the oligomer. These observations indicate that the CA/TG doublet junction at the 5' end of the oligo(A)-tract has a crucial role in modulating the overall curvature in DNA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose that strong fluorescence in conjugated polymers requires a dipole-allowed state to be the lowest singlet. Hückel theory for para-conjugated phenyl rings yields an extended, topologically one-dimensional ?-system with increased alternation, states localized on each ring, and charge-transfer excitations between them. Exact Pariser�Parr�Pople results and molecular spectra for oligomers support a topological contribution and a lowest dipole-allowed singlet in phenylene polymers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An analysis of the base pair doublet geometries in available crystal structures indicates that the often reported intrinsic curvature of DNA containing oligo-(d(A).d(T)) tracts may also depend on the nature of the flanking sequences. The presence of CA/TG doublet in particular at the 5' end of these tracts is expected to enhance their intrinsic bending property. To test this proposition, three oligonucleotides, d(GAAAAACCCCCC), d(CCCCCCAAAAAG), d(GAAAAATTTTTC), and their complementary sequences were synthesized to study the effect of various flanking sequences, at the 5' and 3' ends of the A-tracts, on the curvature of DNA in solution. An analysis of the polyacrylamide gel electrophoretic mobilities of these sequences under different conditions of salts and temperatures (below their melting points) clearly showed that the oligomer with CA/TG sequence in the center was always more retarded than the oligomer with AC/GT sequence, as well as the oligomer with AT/AT sequence. Hydroxyl radical probing of the sequences with AC/GT and CA/TG doublet junctions gives a similar cutting pattern in the A-tracts, which is quite different from that in the C-tracts, indicating that the oligo(A)-tracts have similar structures in the two oligomers. KMnO4 probing shows that the oligomer with a CA/TG doublet junction forms a kink that is responsible for its inherent curvature and unusual electrophoretic mobility. UV melting shows a reduced thermal stability of the duplex with CA/TG doublet junction, and circular dichroism (CD) studies indicate that a premelting transition occurs in the oligomer with CA/TG doublet step before global melting but not in the oligomer with AC/GT doublet step, which may correspond to thermally induced unbending of the oligomer. These observations indicate that the CA/TG doublet junction at the 5' end of the oligo(A)-tract has a crucial role in modulating the overall curvature in DNA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The absorption spectrum in the visible range and the, ESR spectrum of vanadyl sulfate were lost on addition of diperoxovanadate. The V-51-NMR spectra revealed that diperoxovanadate was reduced to vanadate and its oligomers. With excess vanadyl, tetrameric vanadate was found to be the major product, During this reaction oxygen was released into the medium. The oxygen-release reaction was inhibited by a variety of organic ligands-imidazole, benzoate, formate, mannitol, ethanol, Tris, DMPO, malate, and asparagine. An oxygen-consuming reaction emerged at high concentrations of some of these compounds, e.g. benzoate and ethanol. Using DMPO as the spin-trap, an oxygen-radical species with a 1:2:2:1 type of ESR spectrum was detected in the reaction mixtures resulting from vanadyl oxidation by diperoxovanadate which was unaffected by addition of catalase or ethanol. The results showed that secondary oxygen-exchange reactions occur which depend on and utilize the intermediates in the primary reaction during diperoxovanadate-dependent oxidation of vanadyl sulfate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2-Methylcitric acid (2-MCA) cycle is one of the well studied pathways for the utilization of propionate as a source of carbon and energy in bacteria such as Salmonella typhimurium and Escherichia coli. 2-Methylcitrate synthase (2-MCS) catalyzes the conversion of oxaloacetate and propionyl-CoA to 2-methylcitrate and CoA in the second step of 2-MCA cycle. Here, we report the X-ray crystal structure of S. typhimurium 2-MCS (StPrpC) at 2.4 A resolution and its functional characterization. StPrpC was found to utilize propionyl-CoA more efficiently than acetyl-CoA or butyryl-CoA. The polypeptide fold and the catalytic residues of StPrpC are conserved in citrate synthases (CSs) suggesting similarities in their functional mechanisms. In the triclinic P1 cell, StPrpC molecules were organized as decamers composed of five identical dimer units. In solution, StPrpC was in a dimeric form at low concentrations and was converted to larger oligomers at higher concentrations. CSs are usually dimeric proteins. In Gram-negative bacteria, a hexameric form, believed to be important for regulation of activity by NADH, is also observed. Structural comparisons with hexameric E. coil CS suggested that the key residues involved in NADH binding are not conserved in StPrpC. Structural comparison with the ligand free and bound states of CSs showed that StPrpC is in a nearly closed conformation despite the absence of bound ligands. It was found that the Tyr197 and Leu324 of StPrpC are structurally equivalent to the ligand binding residues His and Val, respectively, of CSs. These substitutions might determine the specificities for acyl-CoAs of these enzymes. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two smectite samples having different layer charges were pillared using hydroxy aluminium oligomers at a OH/Al ratio of 2.5 and at pH 4.3 to 4.6. Pillaring was carried out at different conditions such as ageing, temperature and base addition time of the pillaring solution, and also in the presence of nonionic surfactant polyoxyethylene sorbitanmonooleate (Tween-80). The primary objective of preparing at different conditions was to introduce varied quantities of aluminium oligomer between the layers and to study its effect on the properties of the pillared products. A simple method has been followed to estimate the amount of interlayer aluminium. A quantity called pillar density number (PDN) based on the ratio of interlayer Al adsorbed to CEC of the parent clay has been effectively used to evaluate the nature of the resulting pillared product. PDN, for a given clay, was found to correlate well with the sharpness of the d(001) peaks for the air dried samples. The calculated number of pillars, varied from 3.00 x 10(18) to 5.32 x 10(18) per meq charge. The present study shows that a higher value of PDN is indicative of better thermal stability. Pillar density number may be conveniently used as a measure of the thermal stability of pillared samples.