696 resultados para POLYANILINE NANOFIBERS
Resumo:
Soluble poly (o-toluidine) (POT), poly(o-anisidine) (PAs) and poly (o-chloroaniline) (PCAn) were doped with camphorsulfonic acid (CSA). The conductivity and UV-Vis spectra of the CSA-doped POT, PAs and PCAn were studied. These properties were found to be dependent on the solvent used. The cast films from m-cresol solution exhibit more effective doping and higher conductivity.
Resumo:
Solution properties of polyaniline (PAn) doped by camphorsulfonic acid (CSA) were examined. PAn-CSA behaves like a polyelectrolyte to different extents depending on the solvent used. In an m-cresol/chloroform solution, PAn-CSA exhibits an expanded chain conformation because of its polyelectrolytic properties. Dilute and concentrated solution properties of PAn-CSA indicate that PAn-CSA is a semirigid polymer which has strong interchain interactions.
Resumo:
New synthesis system was established to prepare polyaniline (PAn) with controlled molecular weight. The synthesized PAn was completely soluble in many organic solvents such as dimethylsulfoxide (DMSO), dimethylformamide and N-methylpyrrolidone (NMP). The molecular aggregation due to the interaction between PAn and NMP molecules was found in dilute PAn/NMP solution. The gelatin of concentrated PAn/NMP solution was a physical crosslinking between PAn molecules with the help of NMP through hydrogen bonding. A gelatin mechanism was proposed.
Resumo:
This paper presents our work on the rheological properties of the solution of polyaniline (PAn) in N-methyl-2-pyrrolidone (NMP). The results indicate that the solution's non-Newtonian property becomes more prominent with the increase in solution concentrations exhibiting the behavior of pseudo-plastic fluid. Besides, there is a critical concentration C-v (around 0.06 g/ml), beyond which the viscosity of the PAn/NMP solution takes a sudden increase. with temperature rising, both the viscosity and the thixotropy of the solution decrease, implying that there exist physical cross-linking interactions between the molecular chains in the solution.
Resumo:
Solutions of polyaniline (PAn), poly(ortho-toluidine) (POT) and poly(ortho-anisidine) (PAs) in N-methyl pyrrolidinone (NMP) were examined by viscometric, gel permeation chromatographic (GPC) and theological methods. Strong intermolecular interaction and molecular aggregation are shown.
Resumo:
Sulfonated polyaniline(SPAn) with different sulfonation degree(SD) was prepared, its structure was studied by spectroelectrochemical method, some of its special properties were given.
Resumo:
Chlorinated polyaniline (Cl-PAn)with different CI content was synthesized. Typical Cl-PAn 100% soluble in THF both in doped and undoped state was characterized, and the chloroaddition mechanism was discussed.
Resumo:
The macromolecular complex of polyaniline(PAn) was prepared using sulfonated polystyrene(SPS) with sulfonation degree (SD) from 5 to 60mol% and characterized.
Resumo:
Aluminum solid electrolytic capacitors with polyaniline doped with inorganic and organic acids as counterelectrode were fabricated, their properties were studied.
Resumo:
Thermal properties of polyaniline (PAn), polytoluidine(POT) and polyanisidine(PAs) were examined by TG and DSC techniques. The weight-uptake of POT at 200-300 degrees C was observed and carefully discussed.
Resumo:
Thermal behavior of polyaniline(PAn) doped with kinds of inorganic or organic acids under desired atmosphere were studied by TG,DSC and in-situ electrical conductivity measurements. The reason for the thermal stability of electrical conductivity of doped PAn was discussed.
Resumo:
The thermal decomposition of polyaniline(PAn) and poly-o-toluidine(POT) was studied by means of direct pyrolysis mass spectrometry(DM) and MS/MS, The results showed that both benzene-diamine and quinone-diimine units were produced, and the intensities of fragments corresponding to quinone-diimine units increased as the oxidation degrees increased, The mechanism of thermal decomposition of PAn and POT was given for the first time.
Resumo:
The aniline encapsulated in the channels of zeolite molecular sieves was polymerized electrochemically. The doping reaction of polyaniline was studied in 12-Molybdophosphoric acid and sulfuric acid solution. The results indicate the zeolite modified ele
Resumo:
A novel type of electrochemical detector based on a polyaniline-dispersed mercury-coated glassy carbon chemically modified electrode was investigated for the detection of monochloramine and dichloramine. A polyaniline dispersed-mercury modified electrode, which was prepared by coating polyaniline on a thin mercury film electrode using fast-sweep voltammetry, was developed. The selectivity could be altered using various counter ions incorporated into the polymer. The results indicated that the use of a conducting polymer-based electrochemical sensor for the selective determination of chloramine is a feasible approach.